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Alan Turing (1950) famously believed that in order to 
build a general artificial intelligence, one must create a 
machine that can learn like a child. Indeed, recent 
advances in machine learning often contain references 
to childlike learning and exploration (Riedmiller et al., 
2018). Yet little is known about how children actually 
explore and search for rewards in their environments and 
in what ways their behavior differs from that of adults.

In the course of learning through interactions with 
the environment, all organisms (biological or machine) 
are confronted with the exploration–exploitation 
dilemma (Mehlhorn et al., 2015). This dilemma high-
lights two opposing goals. The first goal is to explore 
unfamiliar options that provide useful information for 
future decisions yet may result in poor immediate 
rewards. The second goal is to exploit options known 
to have high expectations of reward but potentially 
forgo learning about unexplored options.

In addition to balancing exploration and exploitation, 
another crucial ingredient for adaptive search behavior 

is a mechanism that can generalize beyond observed 
outcomes, thereby guiding search and decision making 
by forming inductive beliefs about novel options. For 
example, from a purely combinatorial perspective, it 
takes only a few features and a small range of values to 
generate a pool of options vastly exceeding what could 
ever be explored in a lifetime. Nonetheless, humans of 
all ages manage to generalize from limited experiences 
in order to choose from among a set of potentially 
unlimited possibilities. Thus, a model of human search 
also needs to provide a mechanism for generalization.

Previous research has found extensive variability and 
developmental differences in children’s and adults’ 
search behavior, which not only result from a progressive 
refinement of basic cognitive functions (e.g., memory, 
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attention) but also derive from systematic changes in the 
computational principles driving behavior (Palminteri, 
Kilford, Coricelli, & Blakemore, 2016). In particular, 
developmental differences in learning and decision mak-
ing have been explained by appealing to three hypoth-
esized mechanisms: Children sample more randomly, 
explore more eagerly, and generalize more narrowly than 
adults.

In this study, we investigated how these three mecha-
nisms are able to explain developmental differences in 
exploration–exploitation behavior. We provided a pre-
cise characterization of these competing ideas in a formal 
model, which was used to predict behavior in a search 
task in which noisy and continuous rewards were spa-
tially correlated. Using behavioral markers, interpreting 
parameter estimates from computational models, and 
analyzing judgments about unexplored options, we 
found that children generalize less but engage in more 
directed exploration than adults. We did not, however, 
find reliable developmental differences in random explo-
ration. These results enrich our understanding of matura-
tion in learning and decision making, demonstrating that 
children explore using uncertainty-guided mechanisms 
rather than simply behaving more randomly.

A Tale of Three Mechanisms

Development as cooling off

Because optimal solutions to the exploration–
exploitation dilemma are generally intractable (Bellman, 
1952), heuristic alternatives are frequently employed. 
In particular, learning under the demands of the 
exploration–exploitation trade-off has been described 
using at least two distinct strategies (Wilson, Geana, 
White, Ludvig, & Cohen, 2014). One such strategy is 
increased random exploration, which uses noisy, ran-
dom sampling to learn about new options.

A key finding in the psychological literature is that 
children tend to try out more options than adults 
(Cauffman et al., 2010; Mata, Wilke, & Czienskowski, 
2013). This has been interpreted as evidence for higher 
levels of random exploration in children and has been 
loosely compared with algorithms of simulated anneal-
ing from computer science (Gopnik et  al., 2017), in 
which the amount of random exploration gradually 
reduces over time. Children can be described as having 
higher temperature parameters, in which the learner ini-
tially samples very randomly across a large set of pos-
sibilities before eventually focusing on a smaller subset 
(Gopnik, Griffiths, & Lucas, 2015). This temperature 
parameter is expected to “cool off” with age, leading to 
lower levels of random exploration in late childhood and 
adulthood.

Development as reduction of directed 
exploration

A second strategy to tackle the exploration–exploitation 
dilemma is to use directed exploration by preferentially 
sampling highly uncertain options in order to gain more 
information and reduce uncertainty about the environ-
ment. Directed exploration has been formalized by intro-
ducing an “uncertainty bonus” that values the exploration 
of lesser known options (Auer, 2002), with behavioral 
markers found in a number of studies (Frank, Doll, Oas-
Terpstra, & Moreno, 2009; Wu, Schulz, Speekenbrink, 
Nelson, & Meder, 2018).

Directed exploration treats information as intrinsically 
valuable by inflating rewards by their estimated uncer-
tainty (Auer, 2002). This leads to a more sophisticated 
uncertainty-guided sampling strategy that could also 
explain developmental differences. Indeed, the literature 
on self-directed learning shows that children are clearly 
capable of exploring their environment in a systematic, 
directed fashion. Already, infants tend to value the explo-
ration of uncertain options (L. Schulz, 2015), and children 
can balance theory and evidence in simple exploration 
tasks (Bonawitz, van Schijndel, Friel, & Schulz, 2012) and 
are able to efficiently adapt their search behavior to dif-
ferent environmental structures (Ruggeri & Lombrozo, 
2015). Moreover, children can sometimes even outper-
form adults in the self-directed learning of unusual rela-
tionships (Lucas, Bridgers, Griffiths, & Gopnik, 2014). 
Both directed and random exploration do not have to be 
mutually exclusive mechanisms, with recent research 
finding signatures of both types of exploration in ado-
lescent and adult participants (Gershman, 2018; Somerville 
et al., 2017; Wilson et al., 2014).

Development as refined generalization

Rather than explaining development as a change in how 
we explore given some beliefs about the world, 
generalization-based accounts attribute developmental 
differences to the way we form our beliefs in the first 
place. Many studies have shown that human learners use 
structured knowledge about the environment to guide 
exploration (E. Schulz, Konstantinidis, & Speekenbrink, 
2017), where the quality of these representations and 
the way that people use them to generalize across expe-
riences can have a crucial impact on search behavior. 
Thus, development of more complex cognitive processes 
(Blanco et al., 2016), leading to broader generalizations, 
could also account for the observed developmental dif-
ferences in sampling behavior.

The notion of generalization as a mechanism for 
explaining developmental differences has a long-standing 
history in psychology. For instance, Piaget (1964) assumed 
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that children learn and adapt to different situational 
demands by the processes of assimilation (applying a 
previous concept to a new task) and accommodation 
(changing a previous concept in the face of new infor-
mation). Expanding on Piaget’s idea, Klahr (1982) pro-
posed generalization as a crucial developmental process, 
in particular the mechanism of regularity detection, 
which supports generalization and improves over the 
course of development. More generally, the implementa-
tion of various forms of decision making (Hartley & 
Somerville, 2015) could be constrained by the capacity 
for complex cognitive processes, which become more 
refined over the life span. For example, although 
younger children attend more frequently to irrelevant 
information than older children (Hagen & Hale, 1973), 
they can be prompted to attend to the relevant informa-
tion by marking the most relevant cues, whereupon 
they eventually select the best alternative (Davidson, 
1996). Thus, children may indeed be able to apply 
uncertainty-driven exploratory strategies but lack the 
appropriate task representation to successfully imple-
ment them.

A Task to Study Generalization  
and Exploration

We studied the behavior of both children and adults in 
a spatially correlated multiarmed-bandit task (Wu et al., 
2018; see Fig. 1a), in which rewards were distributed 
on a grid characterized by spatial correlation (i.e., simi-
lar rewards cluster together; see Fig. 1g; for a similar 
task, see White, 2013), and the search horizon was vastly 
smaller than the number of options. Efficient search and 
accumulation of rewards in such an environment require 
two critical components. First, participants need to learn 
about the underlying spatial correlation in order to gen-
eralize from observed rewards to unseen options. This 
is crucial because there are considerably more options 
than can be explored within the limited search horizon. 
Second, participants need a sampling strategy that 
achieves a balance between exploring new options and 
exploiting known options with high rewards.

Method

Participants

We recruited 55 younger children (26 female; age: M = 
7.53 years, SD = 0.50, range = 7−8), 55 older children 
(24 female; age: M = 9.95 years, SD = 0.80, range = 
9–11), and 50 adults (25 female; age: M = 33.76 years, 
SD = 8.53, range = 18–55) at the Berlin Natural History 
Museum in Germany. We determined the different age 
groups and the number of participants per group before 

data collection on the basis of existing findings showing 
strong developmental differences between ages 7 and 
10 years in children’s question asking and active search 
behavior (Davidson, 1991; Ruggeri & Lombrozo, 2015). 
Participants were paid up to €3.50 for taking part in the 
experiment, contingent on performance (M = €2.67,  
SD = 0.50, range = €2.00–€3.50). Informed consent was 
obtained from all participants.

Design

The experiment used a between-subjects design, in 
which each participant was randomly assigned to one 
of two different classes of environments (see Fig. 1g): 
smooth or rough, with smooth environments having 
stronger spatial correlations than rough environments. 
We generated 40 of each class of environments from a 
radial-basis-function kernel (see below), with λ of 4 for 
smooth and λ of 1 for rough. On each round, a new 
environment was sampled (without replacement) from 
the set of 40 environments, which was then used to 
define a bivariate function on the grid, with each obser-
vation including additional normally distributed noise 
є~N(0, 1). The task was presented over 10 rounds on 
different grid worlds drawn from the same class of 
environments. The first round was a tutorial round, and 
the last round was a bonus round, in which participants 
sampled for 15 trials and then had to generate predic-
tions for five randomly chosen and previously unob-
served tiles on the grid. Participants had a search 
horizon of 25 trials per grid, including repeat clicks.

Materials and procedure

Participants were introduced to the task through a tuto-
rial round, which familiarized them with the spatial 
correlation of rewards and the possibility of reclicking 
tiles. Moreover, participants were told that they would 
be rewarded on the basis of the sum of sampled points. 
Afterward, they had to complete three comprehension 
questions before starting the task. At the beginning of 
each round, one random tile was revealed, and partici-
pants could click on any of the tiles (including reclicks) 
on the grid until the search horizon was exhausted. 
Clicking an unrevealed tile displayed the numerical 
value of the reward along with a corresponding color 
aid; darker colors indicated higher rewards. Per round, 
observations were scaled to a randomly drawn maxi-
mum value in the range of 35 to 45 so that the value 
of the global optima could not be easily guessed. 
Reclicked tiles could show some variations in the 
observed value because of noise. For repeat clicks, the 
most recent observation was displayed numerically, and 
the color of the tile corresponded to the mean of all 
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previous observations. In the bonus round, participants 
sampled for 15 trials and were then asked to generate 
predictions for five randomly selected and previously 
unobserved tiles. This was explained to them before 
the bonus round started. Additionally, participants had 
to indicate how certain they were about each prediction 
on a scale from 0 to 10. Afterward, they had to select 
one of the five tiles before continuing with the round.

Participants were awarded up to 5 stars at the end of 
each round (e.g., 4.6 out of 5) on the basis of the ratio 
of their average reward to the global maximum. The 
performance bonus was calculated on the basis of the 
average number of stars earned in each round, excluding 
the tutorial round: 5 out of 5 stars corresponded to €3.50, 
whereas each half-star interval reduced the bonus by 
€0.50 until a minimum bonus of €0.50.

A combined model of generalization 
and exploration

We used a formal model that combined generalization 
with a sampling strategy accounting for both directed 
and random exploration (Wu et al., 2018) to predict each 
participant’s out-of-sample search behavior. The gener-
alization component was based on Gaussian-process 
regression, which is a Bayesian function-learning 
approach theoretically capable of learning any station-
ary function (Rasmussen & Williams, 2006) and has been 
found to effectively describe human behavior in explicit 
function-learning tasks (Lucas, Griffiths, Williams, & 
Kalish, 2015). The Gaussian-process component is used 
to adaptively learn a value function, which generalizes 
the limited set of observed rewards over the entire 
search space using Bayesian inference.

The Gaussian-process prior is completely determined 
by the choice of a kernel function, k(x, x′), which 
encodes assumptions about how points in the input 
space are related to each other. A common choice of 
this function is the radial-basis function:

k x x
x x

( , )
| |

,′ −
− ′

=








exp

| |2

λ

where the length-scale parameter λ encodes the extent 
of spatial generalization between options (tiles) in the 
grid. The assumptions of this kernel function are similar 
to the gradient of generalization historically described 
by Shepard (1987), which also models generalization 
as an exponentially decaying function of the stimulus 
similarity distance (see Fig. 1h), which has been 
observed across a wide range of stimuli and organisms. 
As an example, generalization with λ of 1 corresponds 
to the assumption that the rewards of two neighboring 
tiles are correlated by an r of .6 and that this correlation 
effectively decays to 0 for options more than three tiles 
apart. We treated λ as a free parameter in our model 
comparison to assess age-related differences in the 
capacity for generalization.

Given different possible options (x) to sample from 
(i.e., tiles on the grid), Gaussian-process regression 
generated normally distributed beliefs about rewards 
with expectation μ(x) and estimated uncertainty σ(x); 
see Figures 1b and 1c. A sampling strategy was then 
used to map the beliefs of the Gaussian process onto 
a valuation for sampling each option at a given time. 
Crucially, such a sampling strategy must address the 
exploration–exploitation dilemma. One frequently 
applied heuristic for solving this dilemma is upper-
confidence-bound (UCB) sampling (Srinivas, Krause, 
Kakade, & Seeger, 2009), which evaluates each option 
on the basis of a weighted sum of expected reward and 
estimated uncertainty:

UCB( )x x x= +µ( ) βσ( ),

where β models the extent to which uncertainty (in 
addition to mean rewards) is valued positively and 
therefore directly sought out. This strategy corresponds 
to directed exploration because it encourages the sam-
pling of options with higher uncertainty according to 
the underlying generalization model (see Fig. 1i). We 
treated the exploration parameter β as a free parameter 
to assess how much participants value the reduction of 
uncertainty (i.e., engage in directed exploration). As an 
example, an exploration bonus β of 0.5 means that 
participants would prefer option x1, expected to have 

Fig. 1.  Overview of task and model. The screenshot (a) shows the experiment in the middle of a round with the grid partially 
revealed. Expected reward (b) and estimated uncertainty (c) based on observations of the grid in (a) are shown as obtained using 
Gaussian-process regression as a model of generalization. Upper confidence bounds (UCBs) for each option (d) are based on a 
weighted sum of (b) and (c). Choice probabilities of the softmax function are shown in (e). Median participant parameter estimates 
are used in (b) through (e). An overview of the experimental design is shown in (f). Participants first completed a tutorial round and 
then eight rounds of search with feedback. Finally, they completed a bonus round that also included judgments about unobserved 
tiles. The two types of environments used in the experiment are shown in (g): Smooth environments had stronger spatial correlations 
than rough environments. Correlations of rewards between different options (h) decay exponentially as a function of their distance, 
where higher values of λ lead to slower decays and broader generalizations. The illustration of UCB sampling (i) uses a univariate 
example, in which the expected reward (black line) and estimated uncertainty (gray ribbons for different values of β) are summed. 
Higher values of β value the exploration of uncertain options more strongly (compare the arguments of the maxima of the two β 
values, indicated by the × and the triangle). In the overview of the softmax function (j), higher values of the temperature parameter 
τ lead to greater random exploration.



1566	 Schulz et al.

reward μ(x1) equal to 30 and uncertainty σ(x1) equal to 
10, over option x2, expected to have reward μ(x2) equal 
to 34 and uncertainty σ(x2) equal to 1. This is because 
sampling x1 is expected to reduce a larger amount of 
uncertainty, even though x2 has a higher expected reward: 
UCB(x1|β = 0.5) = 35 versus UCB(x2|β = 0.5) = 34.5.

Finally, we use a softmax function to map the UCB 
values, UCB(x), of our proposed Gaussian-process–
UCB sampling model onto choice probabilities:

p x
x

x
j

N

j

( )
( )/

( )/
,=

( )
( )=∑

exp UCB

exp UCB

τ

τ
1

where τ is the temperature parameter governing the 
amount of randomness in sampling behavior. If τ is 
high (higher temperatures), then participants are 
assumed to sample more randomly, whereas if τ is low 
(cooler temperatures), the choice probabilities are con-
centrated on the highest valued options (see Fig. 1j). 
Thus, τ encodes the tendency toward random explora-
tion. We treated τ as a free parameter to assess the 
extent of random exploration in children and adults 
(for alternative implementations such as є-greedy sam-
pling and estimation of optimal parameters, see the 
Supplemental Material available online).

In summary, Gaussian-process–UCB models contain 
three different parameters: the length-scale λ capturing 
the extent of generalization, the exploration bonus β 
describing the extent of directed exploration, and the 
temperature parameter τ modulating random explora-
tion. These three parameters directly correspond to the 
three postulated mechanisms of developmental differ-
ences in various decision-making tasks and can also be 
robustly recovered (see the Supplemental Material).

Results

Behavioral results

Comparing participants’ average rewards, we found that 
participants gained higher rewards in smooth than in 
rough environments (see Fig. 2a), t(158) = 10.51, p < .001, 
d = 1.66, 95% confidence interval (CI) = [1.30, 2.02], Bayes 
factor (BF) > 100, suggesting that they made use of the 
spatial correlations and performed better when correla-
tions were stronger. Adults performed better than older 
children (see Fig. 2a), t(103) = 4.91, p < .001, d = 0.96, 
95% CI = [0.55, 1.37], BF > 100, who in turn performed 
somewhat better than younger children, t(108) = 2.42,  
p = .02, d = 0.46, 95% CI = [0.08, 0.84], BF = 2.68. Analyz-
ing the distance between consecutive choices (see Fig. 
2b) revealed that participants sampled more locally 
(smaller distances) in smooth than in rough environments, 
t(158) = −3.83, p < .001, d = 0.61, 95% CI = [0.29, 0.93], 

BF > 100. Adults sampled more locally than older children, 
t(103) = −3.9, p < .001, d = 0.76, 95% CI = [0.36, 1.16],  
BF > 100, but there was no difference between younger 
and older children, t(108) = 1.76, p = .08, d = 0.34, 95%  
CI = [−0.05, 0.72], BF = 0.80. Importantly, adults sampled 
fewer unique options than older children (14.5 vs. 21.7), 
t(103) = –6.77, d = 1.32, 95% CI = [0.90, 1.75], p < .001,  
BF > 100, whereas the two children groups did not differ 
in how many unique options they sampled (21.7 vs. 22.7), 
t(108) = 1.27, d = 0.24, 95% CI = [−0.14, 0.62], p = .21,  
BF = 0.4.

Looking at the learning curves (i.e., average rewards 
over trials; see Fig. 2c), we found a positive rank cor-
relation between mean rewards and trial number, Spear-
man’s ρ = .12, 95% CI = [.08, .16], t(159) = 6.12, p < .001, 
BF > 100. Although this correlation did not differ 
between the rough and smooth conditions, t(158) = 
−0.43, p = .67, d = 0.07, 95% CI = [−0.24, 0.38], BF = 
0.19, it was significantly higher for adults than for older 
children (.29 vs. .08), t(103) = 5.90, p < .001, d = 1.15, 
95% CI = [0.74, 1.57], BF = 0.19, BF > 100. The correla-
tion between trials and rewards did not differ between 
younger and older children (.04 vs. .08), t(108) = −1.87, 
p = .06, d = 0.36, 95% CI = [−0.02, 0.74], BF = 0.96. 
Therefore, adults learned faster, whereas children 
explored more extensively (for further behavioral analy-
ses, see the Supplemental Material).

Model comparison

We compared the Gaussian-process–UCB model with 
an alternative model that does not generalize across 
options but is a powerful Bayesian model for reinforce-
ment learning across independent reward distributions 
(mean-tracker model). Model comparisons were based 
on leave-one-round-out cross-validation error, in which 
we fitted each model combined with the UCB sampling 
strategy to each participant using a training set omitting 
one round, and then we assessed predictive perfor-
mance on the hold-out round. Repeating this procedure 
for every participant and all rounds (apart from the 
tutorial and the bonus rounds), we calculated the stan-
dardized predictive accuracy for each model (pseudo 
R2 comparing out-of-sample log loss with random 
chance), where 0 indicates chance-level predictions, 
and 1 indicates theoretically perfect predictions (for full 
model comparison with additional sampling strategies, 
see the Supplemental Material). The results of this com-
parison are shown in Figure 2d. The Gaussian-process–
UCB model predicted participants’ behavior better 
overall, t(159) = 13.28, p < .001, d = 1.05, 95% CI = [0.82, 
1.28], BF > 100, and also for adults, t(49) = 5.98, p < 
.001, d = 0.85, 95% CI = [0.43, 1.26], BF > 100; older 
children, t(54) = 10.92, p < .001, d = 1.48, 95% CI = 
[1.05, 1.90], BF > 100; and younger children, t(54) = 



1567

Ro
ug

h
Sm

oo
th

7−
8

9−
11

>
 1

8
7−

8
9−

11
>

 1
8

02040

Ag
e 

(y
ea

rs
)

Reward
Pe

rfo
rm

an
ce

Ro
ug

h
Sm

oo
th

0
2

4
6

8
10

0
2

4
6

8
10

7−
8

9−
11

>
 1

8

Di
st

an
ce

Age (years)

Se
ar

ch
 B

eh
av

io
r

2530354045

0
5

10
15

20
25

Tr
ia

l

Reward

Le
ar

ni
ng

 C
ur

ve
s

7−
8 

Ye
ar

s
9−

11
 Y

ea
rs

>
 1

8 
Ye

ar
s

M
T

GP
M

T
GP

M
T

GP

−
0.

5

0.
0

0.
5

1.
0

M
od

el

Predictive Accuracy (R
2
)

M
od

el
 C

om
pa

ris
on

Ge
ne

ra
liz

at
io

n 
λ

Ex
pl

or
at

io
n 
β

Te
m

pe
ra

tu
re

 τ

7−
8

9−
11

>
 1

8
7−

8
9−

11
>

 1
8

7−
8

9−
11

>
 1

8

0.
0

0.
5

1.
0

1.
5

2.
0

Ag
e 

(y
ea

rs
)

Estimate
Pa

ra
m

et
er

 E
st

im
at

es

253035

0
5

10
15

20
25

Tr
ia

l

Reward

Sm
oo

th
Ro

ug
h

Ag
e

>
 1

8
7−

8
9−

11

Sm
oo

th
Ro

ug
h 

Ag
e

>
 1

8
7−

8
9−

11

Si
m

ul
at

ed
 L

ea
rn

in
g 

Cu
rv

es

a
b

c

d
e

f

F
ig

. 
2
. 

M
ai

n
 r

es
u
lt
s.

 T
u
k
ey

 b
o
x-

an
d
-w

h
is

k
er

 p
lo

ts
 o

f 
re

w
ar

d
s 

(a
) 

sh
o
w

 t
h
e 

d
is

tr
ib

u
ti
o
n
 o

f 
al

l 
ch

o
ic

es
 f

o
r 

al
l 
p
ar

ti
ci

p
an

ts
, 
se

p
ar

at
el

y 
fo

r 
ea

ch
 a

ge
 g

ro
u
p
 a

n
d
 c

o
n
d
it
io

n
. 
In

 e
ac

h
 b

o
x,

 
th

e 
h
o
ri

zo
n
ta

l 
li
n
e 

re
p
re

se
n
ts

 t
h
e 

m
ed

ia
n
, 
th

e 
h
ei

gh
t 
o
f 
th

e 
b
o
x 

sh
o
w

s 
th

e 
in

te
rq

u
ar

ti
le

 r
an

ge
 o

f 
th

e 
d
is

tr
ib

u
ti
o
n
, 
an

d
 t
h
e 

w
h
is

k
er

s 
sh

o
w

 1
.5

 t
im

es
 t
h
e 

in
te

rq
u
ar

ti
le

 r
an

ge
. 
E
ac

h
 d

o
t 
is

 a
 

p
ar

ti
ci

p
an

t-
w

is
e 

m
ea

n
, 
an

d
 d

ia
m

o
n
d
s 

in
d
ic

at
e 

gr
o
u
p
 m

ea
n
s.

 H
is

to
gr

am
s 

(b
) 

sh
o
w

 d
is

ta
n
ce

s 
b
et

w
ee

n
 c

o
n
se

cu
ti
ve

 c
h
o
ic

es
 b

y 
ag

e 
gr

o
u
p
 a

n
d
 c

o
n
d
it
io

n
. 
A

 d
is

ta
n
ce

 o
f 
ze

ro
 c

o
rr

es
p
o
n
d
s 

to
 a

 r
ep

ea
t 
cl

ic
k
. 
T
h
e 

ve
rt

ic
al

 r
ed

 l
in

e 
m

ar
k
s 

th
e 

d
if
fe

re
n
ce

 b
et

w
ee

n
 a

 r
ep

ea
t 
cl

ic
k
 a

n
d
 s

am
p
li
n
g 

a 
d
if
fe

re
n
t 
o
p
ti
o
n
. 
M

ea
n
 r

ew
ar

d
 a

cr
o
ss

 t
ri

al
s 

(c
) 

is
 s

h
o
w

n
 a

s 
a 

fu
n
ct

io
n
 o

f 
co

n
d
it
io

n
 

an
d
 a

ge
 g

ro
u
p
. 
E
rr

o
r 

b
ar

s 
in

d
ic

at
e 

st
an

d
ar

d
 e

rr
o
rs

 o
f 
th

e 
m

ea
n
. 
T
u
k
ey

 b
o
x-

an
d
-w

h
is

k
er

 p
lo

ts
 f
o
r 

m
o
d
el

 c
o
m

p
ar

is
o
n
s 

(d
) 

sh
o
w

 p
re

d
ic

ti
ve

-a
cc

u
ra

cy
 d

is
tr

ib
u
ti
o
n
s 

fo
r 

G
au

ss
ia

n
-p

ro
ce

ss
 

(G
P
) 

an
d
 m

ea
n
-t

ra
ck

er
 (

M
T
) 

m
o
d
el

s 
b
y 

ag
e 

gr
o
u
p
. 
T
u
k
ey

 b
o
x-

an
d
-w

h
is

k
er

 p
lo

ts
 o

f 
cr

o
ss

-v
al

id
at

ed
 p

ar
am

et
er

s 
re

tr
ie

ve
d
 f

ro
m

 t
h
e 

G
P
–u

p
p
er

-c
o
n
fi
d
en

ce
-b

o
u
n
d
 (

U
C

B
) 

m
o
d
el

 (
e)

 a
re

 
sh

o
w

n
 f

o
r 

ea
ch

 a
ge

 g
ro

u
p
. 
In

 (
d
) 

an
d
 (

e)
, 
ea

ch
 d

o
t 
is

 a
 p

ar
ti
ci

p
an

t-
w

is
e 

m
ea

n
, 
d
ia

m
o
n
d
s 

in
d
ic

at
e 

gr
o
u
p
 m

ea
n
s,

 h
o
ri

zo
n
ta

l 
li
n
es

 i
n
d
ic

at
e 

m
ed

ia
n
s,

 t
h
e 

h
ei

gh
t 
o
f 

ea
ch

 b
o
x 

sh
o
w

s 
th

e 
in

te
rq

u
ar

ti
le

 r
an

ge
 o

f 
th

e 
d
is

tr
ib

u
ti
o
n
, 

an
d
 t

h
e 

w
h
is

k
er

s 
sh

o
w

 1
.5

 t
im

es
 t

h
e 

in
te

rq
u
ar

ti
le

 r
an

ge
. 

O
u
tl
ie

rs
 h

av
e 

b
ee

n
 r

em
o
ve

d
 f

o
r 

re
ad

ab
il
it
y 

b
u
t 

w
er

e 
in

cl
u
d
ed

 i
n
 a

ll
 s

ta
ti
st

ic
al

 t
es

ts
 

(s
ee

 t
h
e 

Su
p
p
le

m
en

ta
l 

M
at

er
ia

l 
av

ai
la

b
le

 o
n
li
n
e)

. 
Le

ar
n
in

g 
cu

rv
es

 s
im

u
la

te
d
 b

y 
th

e 
G

P
-U

C
B

 m
o
d
el

 u
si

n
g 

m
ea

n
 p

ar
ti
ci

p
an

t 
p
ar

am
et

er
 e

st
im

at
es

 (
f)

 a
re

 s
h
o
w

n
 a

s 
a 

fu
n
ct

io
n
 o

f 
tr

ia
l, 

co
n
d
it
io

n
, 
an

d
 a

ge
 g

ro
u
p
. 
E
rr

o
r 

b
ar

s 
in

d
ic

at
e 

st
an

d
ar

d
 e

rr
o
rs

 o
f 

th
e 

m
ea

n
.



1568	 Schulz et al.

6.77, p < .001, d = 0.91, 95% CI = [0.52, 1.31], BF > 100. 
The Gaussian-process–UCB model predicted adults’ 
behavior better than that of older children, t(103) = 
4.33, p < .001, d = 0.85, 95% CI = [0.44, 1.25], BF > 100, 
which in turn was better predicted than behavior of 
younger children, t(108) = 3.32, p = .001, d = 0.63, 95% 
CI = [0.24, 1.02], BF = 24.8.

Developmental differences in 
parameter estimates

We analyzed the mean participant parameter estimates 
of the Gaussian-process–UCB model (see Fig. 2e) to 
assess the contributions of the three mechanisms (gen-
eralization, directed exploration, and random explora-
tion) toward developmental differences. We found that 
adults generalized more than older children, as indi-
cated by larger λ estimates, Mann-Whitney U = 2,001,  
p < .001, rτ = .32, 95% CI = [.18, .47], BF > 100, whereas 
the two groups of children did not differ significantly 
in their extent of generalization, U = 1,829, p = .06,  
rτ = .15, 95% CI = [−.01, .30], BF = 1.7. Furthermore, 
older children valued the reduction of uncertainty more 
than adults (i.e., higher β values), U = 629, p < .001,  
rτ = .39, 95% CI = [.25, .52], BF > 100, whereas there was 
no difference between younger and older children, U = 
1,403, p = .51, rτ = .05, 95% CI = [−.10, .21], BF = 0.2. 
Critically, whereas there were strong differences between 
children and adults for the parameters capturing gener-
alization and directed exploration, there was no reliable 
difference in the softmax temperature parameter τ, with 
no difference between older children and adults, W = 
1,718, p = .03, rτ = .17, 95% CI = [.01, .34], BF = 0.7, and 
only anecdotal differences between the two groups of 
children, W = 1,211, p = .07, rτ = .14, 95% CI = [−.01, 
.30], BF = 1.4.1 This suggests that the amount of random 
exploration did not reliably differ by age group (for 
other implementations of random exploration, see the 
Supplemental Material). Thus, our modeling results con-
verged on the same conclusion as the behavioral results. 
Children explore more than adults, yet instead of being 
random, children’s exploration behavior seems to be 
directed toward options with high uncertainty. Addition-
ally, our parameter estimates are robustly recoverable 
(see the Supplemental Material) and can be used to 
simulate learning curves that reproduce the differences 
between the age groups as well as between smooth and 
rough conditions (see Fig. 2f).

Bonus round

In the bonus round, each participant predicted the 
expected rewards and the underlying uncertainty for 
five randomly sampled unrevealed tiles after having 

made 15 choices on the grid. We first calculated the 
mean absolute error between predictions and the true 
expected value of rewards (see Fig. 3a). Prediction error 
was higher for rough compared with smooth environ-
ments, t(158) = 4.93, p < .001, d = 0.78, 95% CI = [0.46, 
1.10], BF > 100, reflecting the lower degree of spatial 
correlation that could be used to evaluate unseen 
options. Surprisingly, older children were as accurate 
as adults, t(103) = 0.28, p = .78, d = 0.05, 95% CI = 
[−0.44, 0.33], BF = 0.2, but younger children performed 
worse than older children, t(108) = 3.14, p = .002, d = 
0.60, 95% CI = [0.21, 0.99], BF = 15. Certainty judgments 
did not differ between the smooth and rough environ-
ments, t(158) = 1.13, p = .26, d = 0.18, 95% CI = [−0.13, 
0.49], BF = 0.2, or between the different age groups 
(maximum BF = 0.1).

Of particular interest is how judgments about the 
expectation of rewards and perceived uncertainty relate 
to the eventual choice from among the five options 
(implemented as a five-alternative forced choice). We 
standardized the estimated reward and confidence judg-
ment of each participant’s chosen tile by dividing by 
the sum of the estimates for all five options (see Fig. 
3c). Thus, larger standardized estimates reflect a larger 
contribution of either high reward or high certainty on 
the choice. Whereas there was no difference between 
age groups in terms of the estimated reward of the 
chosen option (maximum BF = 0.1), we found that 
younger children preferred options with higher uncer-
tainty slightly more than older children, t(108) = 2.22, 
p = .03, d = 0.42, 95% CI = [0.04, 0.80], BF = 1.8, and 
substantially more than adults, t(103) = 2.82, p = .006, 
d = 0.55, 95% CI = [0.16, 0.95], BF = 6.7. This further 
corroborates our previous analyses, showing that the 
sampling behavior of children is more directed toward 
uncertain options than that of adults.

Discussion

We examined three potential sources of developmen-
tal differences in a complex learning and decision-
making task: random exploration, directed exploration, 
and generalization. Using a paradigm that combines 
both generalization and search, we found that adults 
gained higher rewards and exploited more strongly, 
whereas children sampled more unique options, 
thereby gaining lower rewards but exploring the envi-
ronment more extensively. Using a computational 
model with parameters directly corresponding to the 
three hypothesized mechanisms of developmental dif-
ferences, we found that children generalized less and 
were guided by directed exploration more strongly 
than adults. They did not, however, explore more 
randomly than adults.
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Our results shed new light on the developmental 
trajectories in generalization and exploration, casting 
children not as merely prone to more random sampling 
behavior but as directed explorers who are hungry for 
information in their environment. Our conclusions are 
drawn from converging evidence combining analysis 
of behavioral data and computational modeling. More-
over, our findings are highly recoverable and also hold 
for other formalizations of random exploration instead 
of using the softmax temperature parameter (see the 
Supplemental Material).

Interestingly, related work by Somerville et al. (2017) 
also found no developmental difference in random 
exploration but increasing directed exploration across 
early adolescence, which stabilized in adulthood. We 
believe that our results are not necessarily incompatible 
with that finding. Somerville and colleagues defined 
directed exploration using horizon-sensitive exploration 
(i.e., strategic planning of exploration), whereas we 
defined directed exploration as uncertainty-guided 
exploration via a greedy UCB algorithm. Thus, children 
may have higher tendencies toward directed exploration 
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in a stepwise greedy fashion but fail to exhibit such 
tendencies when planning ahead for multiple steps, per-
haps because of cognitive limitations. This opens up 
further possibilities for studying different mechanisms 
of directed exploration and how they relate to one 
another.

Our results provide strong evidence for developmen-
tal differences in directed exploration driven by both 
expected rewards and the associated uncertainty. These 
findings complement existing research on age-related 
differences in risk- and uncertainty-related behavior 
( Josef et al., 2016). For instance, adolescents and adults 
systematically differ in their tolerance of options with 
outcomes that have unknown probabilities, providing 
converging evidence that uncertainty is valued differ-
ently depending on age (Tymula et al., 2012). Impor-
tantly, in our task, a sampling strategy that sought only 
to reduce uncertainty was inferior to the “optimistic” 
UCB strategy in predicting children’s and adults’ behav-
ior (for details, see the Supplemental Material). This 
result demonstrates how reward expectations and 
uncertainty interact to produce decision-making behav-
ior that balances the exploration–exploitation trade-off 
adaptively as a function of age. Future work should 
attempt to further disentangle different interpretations 
of uncertainty seeking formally, for example, by not 
familiarizing participants with the underlying environ-
ments or by manipulating the level of noise in the 
outcomes directly.

Furthermore, it is surprising that there were no 
meaningful differences between younger and older 
children’s parameter estimates. Because this indicates 
that directed exploration might be present even earlier 
than expected, future studies could apply our paradigm 
to investigate exploration behavior in even younger 
children.

Our results showing a developmental increase in 
generalization can also be related to previous findings 
showing a developmental increase in the use of task-
structure knowledge in model-based reward learning 
(Decker, Otto, Daw, & Hartley, 2016). Because the gen-
eralization parameter λ can be mathematically equated 
to the speed of learning about the underlying function 
(Sollich, 1999), generalization and learning are inextri-
cably linked in our task. There are, however, other uses 
of the term generalization in the psychological litera-
ture. For example, children are known to generalize 
words or categories more broadly, a tendency that 
decreases over time, trading off with the capacity to 
form more precise episodic memories (Keresztes et al., 
2017). Whereas we focused on generalization in the 
sense used by Shepard (1987; i.e., generalization 
across stimuli), it is an outstanding question how this 
type of generalization relates to word and category 

generalization. It would be a fruitful avenue for future 
research to connect these two domains in a unifying 
theory of generalization.

In our current study, we assessed environments 
with only stationary reward distributions. However, 
given that children displayed increased exploration 
behavior, we believe that they could perform espe-
cially well in environments that change over rounds. 
Whether or not children would outperform adults in 
changing environments remains an important ques-
tion for future research. Ultimately, our results sug-
gest that to fulfill Alan Turing’s dream of creating a 
childlike artificial intelligence, we need to incorpo-
rate generalization and curiosity-driven exploration 
mechanisms.
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Note

1. We also assessed whether there was a correlation between age 
and parameter estimates for the adult participants. This analysis 
revealed no relation between age and λ, r = −.11, t(48) = −0.73, p = 
.47, BF = 0.4; age and β, r = .15, t(48) = −1.03, p = .31, BF = 0.5; or 
age and τ, r = −.09, t(48) = −0.62, p = .53, BF = 0.4. However, these 
results should be interpreted with caution because they are based 
on data from only 50 participants. Future research should try to 
further map out the developmental trajectories of these parameters 
across the whole life span.
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