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What is the best way of discovering the underlying structure of a causal system composed of multiple
variables? One prominent idea is that learners should manipulate each candidate variable in isolation to
avoid confounds (sometimes known as the control of variables [CV] strategy). We demonstrate that CV
is not always the most efficient method for learning. Using an optimal actor model, which aims to
minimize the average number of tests, we show that when a causal system is sparse (i.e., when the
outcome of interest has few or even just one actual cause among the candidate variables), it is more
efficient to test multiple variables at once. Across a series of behavioral experiments, we then show that
people are sensitive to causal sparsity and adapt their strategies accordingly. When interacting with a
dense causal system (high proportion of actual causes among candidate variables), they use a CV
strategy, changing one variable at a time. When interacting with a sparse causal system, they are more
likely to test multiple variables at once. However, we also find that people sometimes use a CV strategy
even when a system is sparse.
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To develop a causal understanding of the world, we often need
to find out how multiple candidate variables affect an outcome of
interest. This problem arises in everyday situations (e.g., “Which
switch[es] control the bathroom fan?”), during scientific explora-
tion (“Which of these treatments can affect disease x?”), and plays
an important part in answering economic and social questions
(“What is the impact of these policies on Gross Domestic Prod-
uct?”). Often, the quickest and most effective method of resolving
causal relationships is to conduct experiments that manipulate
variables of a system (e.g., turning switches on or off) and to
observe the resulting outcome. This kind of causal experimentation
is often (but not always) required to decouple causation and
correlation (Pearl, 2009; Sloman, 2005; Woodward, 2005).

Both children and adults can systematically leverage the out-
comes of interventions to test causal hypotheses that would be
indistinguishable based on observation alone (Lagnado & Sloman,

2004; Lagnado, Waldmann, Hagmayer, & Sloman, 2006; Rottman
& Keil, 2012; Schulz, Gopnik, & Glymour, 2007; Sloman &
Lagnado, 2005; Waldmann & Hagmayer, 2005). Furthermore,
people are sometimes able to come up with highly efficient ex-
periments that optimize information gained per intervention or
minimize the total number of tests needed on average to discover
the true causal structure (Bramley, Dayan, Griffiths, & Lagnado,
2017; Bramley, Lagnado, & Speekenbrink, 2015; Coenen, Rehder,
& Gureckis, 2015; Steyvers, Tenenbaum, Wagenmakers, & Blum,
2003).

Here, we consider a specific learning situation in which people
are asked to explore a causal system consisting of a number of
independent variables (switches) and a dependent outcome (turn-
ing on a fan). These types of problems have played a central role
in research on science education and cognitive development and
are common in everyday experience (Chen & Klahr, 1999; In-
helder & Piaget, 1958; Kuhn & Brannock, 1977; Kuhn, Iordanou,
Pease, & Wirkala, 2008). An example study in this area might
consider how children and adults manipulate variables (such as
water, fertilizer, or sunlight) that affect the health of a plant (see
Klahr, Fay, & Dunbar, 1993). An important focus of science
education research has been to teach basic principles of how
learners should approach such problems in general. Educators have
specifically focused on teaching students the principle of isolating
or controlling variables (i.e., the idea that variables should be
tested individually while holding everything else constant; Kuhn &
Brannock, 1977). As we review below, isolating variables repre-
sents a general strategy for approaching many types of causal
learning problems and often results in nonconfounded evidence.
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In this article, we take a broader perspective on multivariate
experimentation and consider under what circumstances testing
individual variables is more or less effective. In particular, through
an analysis of an optimal actor model, we show that the most
efficient strategy for understanding a multivariate causal system
critically depends on the proportion of causally relevant variables
(which we will refer to as causal sparsity). The key takeaway from
our analyses is that in causally sparse environments, in which the
proportion of causes among the candidate variables is low, chang-
ing multiple variables at once is more effective than controlling
variables individually. We demonstrate, across four experiments,
that naive learners adapt their intervention strategies in line with
these computational predictions. We also highlight interesting
ways in which people deviate from the optimal actor benchmark.
Indeed, despite people’s ability to adapt their strategies, we con-
sistently find a group-level bias toward controlling individual
variables even when changing multiple is more efficient. We also
find that some participants seek out confirmative evidence—that
is, they make interventions they should already know the outcome
of (e.g., Klayman, 1995)—and favor outcome-positive evidence—
that is, they make interventions they expect to produce the effect
rather than something equally informative that they expect to not
produce the effect—in line with a positive testing strategy (e.g.,
Coenen et al., 2015; Klayman, 1995; McKenzie, 2004; White,
2009). We discuss what these deviations suggests about strategy
selection during causal experimentation.

Learning Through Experiments

We start by describing the two main strategies that are consid-
ered in the article before turning to the optimal actor analysis.

Test One Variable at a Time

The ability to learn about the effects of multiple variables has
long been considered a hallmark of mature logical and inductive
reasoning. Beginning with Inhelder and Piaget (1958), researchers
have been particularly interested in the development of what is
often called the control of variables (CV) strategy (for a recent
review on the CV principle, see Zimmerman, 2007). This is an
epistemic strategy in which learners systematically test the effect
of every variable in isolation to avoid confounding evidence by
changing one variable at a time. For example, to find out what
factors affect the health of a plant, the CV principle prescribes that
one should change a single variable, say, the watering regime,
without changing the amount of fertilizer, lighting, and humidity
(Kuhn & Brannock, 1977). Although this is not always made
explicit, the success of this strategy requires that the unchanged
variables are held at their default values (e.g., same level of
fertilizer and light) and not left to vary freely.

In the education literature, considerable emphasis has been
placed on teaching children the CV principle (e.g., Chen & Klahr,
1999; Kuhn & Angelev, 1976; Kuhn & Brannock, 1977). In fact,
its normative status is so pervasive that it features as one of the
assessment criteria in national standards for science education
(e.g., see National Academy of Sciences, 2013, p. 52).

A common finding from empirical studies is that children re-
quire extensive training to acquire the CV principle, and teaching
them to transfer it to novel tasks is an even bigger challenge (e.g.,

Klahr et al., 1993; Kuhn et al., 1995; Kuhn & Phelps, 1982).
Adults and adolescents, although more likely to use the strategy
spontaneously, still show a tendency to test multiple features at
once instead of testing them individually (Kuhn et al., 1995).
Interesting exceptions have been found in more complex tasks. For
example, Bramley et al. (2017) allowed adults to fix any subset of
the variables of a multivariate system and observe the conse-
quences on the other variables with the goal of finding out the
underlying causal structure. In this task, the most informative
tests—according to an optimal model—typically involved leaving
most variables uncontrolled. However, participants often chose to
test one causal relationship at a time by holding most variables at
a constant value. Note that participants might have been more
likely to test individual variables in this rather complex task (with
a vast hypothesis space) because the need to reduce the cognitive
load was particularly severe.

In sum, CV is a widely regarded epistemic principle for learning
about causal systems composed of multiple variables. Mastery of
this principle is often equated with cognitive maturity and accom-
plishment within science, engineering, technology, and mathemat-
ics (STEM) curricula. A key advantage of a CV strategy is that it
results in unconfounded data that is easy to interpret.

Going forward, we will consider a particular instantiation of the
CV principle that applies to multivariate causation. We will refer
to it simply as the test-one strategy, which we define as the
sequential causal activation of individual variables (potential
causes of some outcome), while all other potential causes are kept
inactive to prevent any confounding impact on the outcome.

Test Half or Test Multiple Variables

Changing variables one by one has the benefit of isolating the
effect of every variable without the confounding influence of the
others. It is therefore particularly helpful when one believes that
many variables could potentially affect the outcome. However,
consider the case in which a learner expects only very few vari-
ables, or perhaps just a single variable, to affect the outcome and
is faced with a number of equally plausible candidate variables. In
that case, an alternative strategy is to test multiple variables at
once, to see whether any of them affect the outcome at all. For
example, imagine trying to figure out which out of 20 switches in
a poorly labeled basement fuse box controls the bedroom light. In
this case, a possible strategy for identifying the correct switch is to
turn on half (10 out of 20) of the switches to find out which half
contains the target switch, and then continue testing half of the
remaining switches until only one remains. Compared with testing
switches one by one, this strategy will reduce the number of
basement trips.

The test-multiple or (more specifically) test-half strategy has
been studied by psychologists in a different type of information-
seeking task, based on the popular Twenty Questions game. In this
task, children or adults have to identify a target object or person
among a given set by asking as few yes–no questions as possible.
Here, too, the optimal strategy (in terms of expected information
gain [EIG] see the next section) is to ask questions targeting
features that apply to half the possibilities under consideration
(e.g., “Is the person female?” if the hypotheses are people and half
are each sex) because it reduces the number of alternatives more
rapidly than asking about specific identities directly (e.g., Mosher

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1924 COENEN, RUGGERI, BRAMLEY, AND GURECKIS



& Hornsby, 1966; Navarro & Perfors, 2011). In analogy to the
switch testing example, inquiring about a feature means asking
whether any of the individuals sharing that feature is the target, just
as turning on multiple switches asks whether any of those switches
has an effect on the outcome (the fan). An alternative approach to
asking about shared features would be to test each person individ-
ually (e.g., “Is it Bob?”). This is similar to a test-one strategy that
turns on one switch at a time. In experiments using versions of the
Twenty Questions game, both adults and, to a lesser degree,
children have been shown to be able to use the test-half method
successfully (Nelson, Divjak, Gudmundsdottir, Martignon, &
Meder, 2014; Ruggeri & Feufel, 2015; Ruggeri & Lombrozo,
2015; Ruggeri, Lombrozo, Griffiths, & Xu, 2016). Analogous
“divide-and-conquer” strategies have also emerged in the problem-
solving literature, for example, the symmetry strategy described in
the n-ball problem (Ormerod, MacGregor, Chronicle, Dewald, &
Chu, 2013; Simmel, 1953).

Importantly, using a test-half (or test-multiple) strategy is some-
times considered a reasoning error (particularly in work on CV in
the science education literature). For example, a child that chooses
a test that simultaneously manipulates a plant’s light exposure and
fertilizer would be recorded as low-performing in a classic CV
experiment (Klahr et al., 1993), because changing or setting many
variables at once is thought to confound individual variables.

The test-one and test-half/test-multiple strategies are typically
studied in different kinds of psychological tasks. However, as
demonstrated by the switch example, they can both be reasonable
approaches for testing the causal impact of multiple variables.
Next, we show how the effectiveness of each strategy depends on
the structure of the environment.

Sparsity Determines Effectiveness of
Learning Strategies

As the switch example shows, a crucial factor determining the
effectiveness of a test-one or a test-half strategy is the sparsity of
a causal system. We define sparsity as inversely related to the
proportion of variables causally affecting the outcome. For exam-
ple, when only one of the 20 switches controls the bathroom light
(a sparse environment), a learner can quickly narrow in on the
target switch by trying many variables at once. In contrast, when
there are many effective causes (a dense environment), changing
multiple at once will tend to be ineffective because the outcome
will almost always be produced and little will be learned about
which variable(s) are actually responsible because of the confound.
Thus, the choice of an effective testing strategy in a situation is a
question of ecological rationality, in that it depends to a large
degree on the structure of the environment (Gigerenzer, Todd, &
ABC Research Group, 1999; Todd & Gigerenzer, 2012). Past work
has shown that people behave in an ecologically rational fashion
when sparsity is varied in a number of noncausal hypothesis
testing tasks (in which sparsity applied to hypotheses or events,
e.g., Hendrickson, Navarro, & Perfors, 2016; Langsford, Hen-
drickson, Perfors, & Navarro, 2014; McKenzie, Chase, Todd, &
Gigerenzer, 2012; Navarro & Perfors, 2011; Oaksford & Chater,
1994). For example, Hendrickson et al. (2016) showed that people
switch from requesting positive to negative examples of a concept
when the overall proportion of positive cases increases. In the next

section, we formally show why and how they should do so in
causal scenarios as well.

Modeling the effect of sparsity with an optimal actor model
based on expected information gain. Assume that a learner is
faced with a simple causal system with N binary independent input
variables, I, and a single binary outcome, o. Given the subset of
input variables, C � I, that, when active, can causally affect the
outcome, the probability of the outcome given the current setting
of input variables is

P(o � 1 |C) � �1, if ∃ c � C � (c � 1),
0, otherwise

. (1)

In other words, the outcome occurs if, and only if, any of the input
variables in C are currently active (this is equivalent to an inclusive
or relationship between causes and the outcome).

The learner must now decide how to manipulate the input
variables to figure out which of them are causally relevant (that is,
which variables are members of C). We assume that the learner’s
optimal strategy lies in choosing a switch setting, s � S, that
maximizes the expected gain in information with respect to the
system.

EIG is a common metric for quantifying the value of information-
seeking actions, including causal interventions (see Oaksford &
Chater, 1994; Steyvers et al., 2003).1 It is computed as the expected
reduction in uncertainty over the hypotheses H, after having made an
intervention on the system and observed an outcome. Here, the
learner’s hypotheses are possible sets causally relevant variables, that
is, H � {C1, . . . , Cm}. We are considering the simple case of binary
outcomes (o � 1 or o � 0) with the likelihood of an outcome given
by Equation 1. A learner’s EIG is

EIG(s |H) � SE(H) � �
j�0

1

P(o � j |s) SE(H |s, o), (2)

where SE denotes the Shannon entropy over a distribution of
hypotheses (Shannon & Weaver, 1949), which are possible sets of
causes in this application. The prior entropy is

SE(H) � ��
i

m

P(Ci)logP(Ci). (3)

The updated belief for each element in H after observing an
outcome follows Bayes’ rule,

P(Ci � H |o) �
P(o |Ci)P(Ci)

�j
m P(o |Cj)

, (4)

and the Shannon entropy over the new set of hypotheses is

SE(H |s, o) � ��
i

m

P(Ci |o)logP(Ci |o). (5)

This model is myopic, in that it only optimizes the EIG of the
next action without simulating additional future actions and out-
comes (see next section for further discussion).

1 Although there are a range of possible measures of information
(Nielsen & Nock, 2011), they disagree about the best testing strategy only
in specific fringe cases that do not apply in the current context (Bramley,
Nelson, Speekenbrink, Crupi, & Lagnado, 2014).
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To model the impact of sparsity on the model predictions, we
varied the number of causes ( |C | ) and the number of total vari-
ables (N). Note that these quantities affect the EIG computation in
Equation 2 by constraining the hypothesis set H. For example, if
|C | � 2 and N � 6, then H contains all possible combinations of
two causes in six switches, which yields 15 total hypotheses (the

number of hypotheses is always � N
|C | �). Each hypothesis corre-

sponds to a different set of causes, such that H � {{1,2}, . . . ,
{5,6}}. We furthermore assumed a flat prior belief over all hy-
potheses in H, that is, each hypothesis has a prior probability of
P(Ci) � 1/ |H | .

Figure 1 shows model predictions for the number of variables
this EIG-optimal actor should manipulate given different values of
|C | and N. The model manipulates multiple variables on the first

trial (in fact, exactly N
2 ) when it expects only a single cause. As the

number of causes increases (that is, as causal density increases),
the optimal number of variables to be manipulated decreases and
quickly converges to the test-one strategy. This relationship is
modulated by N, which effectively decreases the degree of causal
density (provided |C | is constant) and, consequently, the number
of variables that should be manipulated.

These results show that knowledge about the causal sparsity of
an environment should affect a learner’s strategy for manipulating
binary variables to find out how they affect an outcome of interest.
This means that even within the same kind of task, there exists a
continuum of optimal strategies with respect to the number of
variables to be manipulated that ranges from test half to test one.

Myopic EIG versus optimal planning. In the experiments
reported in this article, participants are given monetary incentives
aligned with the goal of making efficient interventions (Brier,
1950). Specifically, they receive a fixed payoff for identifying
causally relevant variables and have to pay a small cost every time
they test the system.

This means that although the EIG analysis presented here is
optimal in maximizing informational value for the next trial, it

does not explicitly maximize monetary reward that can result from
a sequence of tests. Doing so requires a forward-looking model
that takes into account the costs of additional tests and the reward
for finding the correct solution. We derive predictions from such
an optimal planning model in Appendix A.

The biggest divergence between optimal planning and myopic
EIG is that the former recommends a broader number of possible
strategies in sparse environments, including changing slightly
fewer and slightly more variables than half. It also makes predic-
tions for when a learner should stop making tests and guess the
answer even if entropy is still nonzero. Evidence suggests that
people do not typically plan multiple steps into the future when
collecting information in causal systems (e.g., Bramley et al.,
2015). Further, past studies suggest that even with strongly mis-
aligned monetary and informational incentives, a large amount of
task experience is required before people will maximize a mone-
tary incentive over accuracy (Markant & Gureckis, 2012; Meder &
Nelson, 2012). We therefore chose to focus on the EIG analysis for
the main body of this article. To foreshadow the results reported
later, we also do not find that the optimal planning model captures
behavior better than myopic EIG. We will address the differences
between myopic EIG and optimal planning where appropriate in
the Results and Discussion sections of each experiment. Crucially,
we should note that for all the experiments reported in this article,
the myopic EIG strategy is always among the set of actions that the
optimal planning model recommends. That is, in sparse environ-
ments, test half is optimal under both models.

Throughout the rest of this article, we refer to the myopic EIG
model as the EIG optimal actor model or, simply, EIG model. We
also occasionally use the term optimal learner, which refers to an
accurate model of belief updating (i.e., computing P[H |o]) in line
with Bayes’ rule in Equation 4.

Overview of Experiments

The results of the modeling presented in the previous section
lead us to the core questions of this artic le: How do people
manipulate variables in multivariate single-outcome systems, and
how do beliefs about causal sparsity affect their inquiry strategies?

To make our predictions explicit, based on the EIG-optimal
actor predictions presented in Figure 1, we hypothesize that when
learning about a causal system, people will use different strategies
depending on their beliefs about the sparsity of the system. When
only a few of the candidate variables are causally effective, we
predict that people will test multiple variables. When many of the
candidate variables are causally effective, we expect people will
test items individually. This result would offer a further demon-
stration that human intervention strategies are ecologically ratio-
nal, in the sense of being well matched to the environment where
they are implemented (Parpart, Jones, & Love, 2018; Todd &
Gigerenzer, 2012).

In the following sections, we present four experiments that
investigate how sparsity affects people’s causal experimentation
strategies. Sparsity is manipulated in two ways, both suggested by
the model results shown in Figure 1. We first vary the number of
causes (i.e., variables that affect the outcome) in a system (Exper-
iments 1 and 2) and, second, the number of total variables avail-
able for testing (Experiment 2). We also investigate what strategies
people select given an unconstrained prior belief (when the degree

1

2

3

4

5

6

1 2 3 4 5 6

No. of causes

N
o.

 o
f c

ha
ng

ed

No. of variables 4 6 9 12

Figure 1. Effect of the number of causes ( |C | ) on the number of
variables tested by an expected information gain-optimal actor,
given different numbers of potential causes (N).
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of sparsity is not specified; Experiment 3). Finally, we test whether
repeated interaction with sparse systems encourages learning of
efficient strategy selection (Experiment 4).

Experiment 1: Manipulating Number of Causes

In the first experiment, participants were presented with a simple
multivariate causal system consisting of a box (see Figure 2) that held
a number of variables (switches) that influenced the outcome (a
spinning wheel). Participants’ goal was to figure out how the system
worked by manipulating the variables (turning switches on and off)
and then testing the effects of this manipulation. Sparsity was manip-
ulated between subjects by changing participant’s a priori belief about
the number of causes (i.e., working switches) among the variables. In
the sparse condition, participants were told that only one switch was
working (only one cause of the outcome). In the dense condition, they
were told that all but one switch were working (many individually
sufficient causes of the outcome). The goal of the experiment was to
assess whether and how sparsity affects people’s testing strategies.
The key dependent measure was the number of switches people
manipulated on each test of the system to figure out how the box
worked.

The goal of this first experiment was to pilot the experimental
paradigm used throughout this article in a lab setting and make sure
that participants understood the main manipulation (of sparsity).

Method

Participants. Thirty participants (15 males; Mage � 23, SDage �
4) were recruited via the subject pool of New York University’s
Department of Psychology. Participants were paid at a rate of $5.00
per hour and could win an additional bonus of up to $3.00. Because
this study was very short (it took around 5 min per participant), it was
conducted with participants who had completed an unrelated memory
experiment immediately prior to this one. The sample size was chosen
to accommodate the number of participants in the memory experi-
ment. Approval for this study was obtained by New York University’s
Institutional Review Board (IRB) under the protocol “Active Learn-
ing in Dynamic Task Environments” (IRB-FY2016-231).

Design and apparatus. Participants were presented with the
wooden box depicted in Figure 2. The dimensions of the box was
approximately 35 cm � 25 cm. All of the sides of the box were
painted blue. The top of the box had a number of vintage electronic

components arranged as shown in the photograph. The motivation
behind using a physical box instead of a digital computer was that
we planned to run a similar experiment with children. However,
subsequent adult experiments were run online and we did not
observe any systematic differences in behavior (see Experiment 2).

The box had six different toggle switches (variables), a yellow
wheel (outcome), and a red activation toggle. Each switch could be
turned to the left (off) or the right (on). The yellow wheel could
either spin (outcome present) or not spin (outcome absent). The
activation toggle controlled whether the box was currently active
(if inactive, the outcome could never occur). A row of three lights
along the lower left side of the box would turn on when the box
was activated by the activation toggle. In addition, a yellow slot
above the activation toggle provided a place for people to insert
“tokens” into the box.

Participants were randomly assigned to one of two experimental
conditions. In the sparse condition, participants were told only one of
the switches caused the wheel to spin, whereas the remaining five
switches were broken. In the dense condition, participants were told
five switches caused the wheel to spin and one switch was broken. A
single working switch was sufficient to activate the wheel, and the
position of the broken switches had no effect whatsoever.

In both conditions, the wheel could only be activated if the
activation toggle was currently in its on position. Otherwise,
participants were told that the box was turned off. Thus, partici-
pants experimented with the system by first setting the variable
switches in different ways and then setting the activation toggle to
“on” to see what happened to the wheel. Which exact switches
were broken or working was randomly determined for each par-
ticipant via a microcomputer hidden inside the box. At the begin-
ning of the experiment, participants were given six plastic tokens,
each of which was worth $0.50. Participants had to pay one token
every time they wanted to turn on the box via the activation toggle
by inserting the coins into the yellow coin slot.

Procedure. Participants were first familiarized with the com-
ponents on the box through verbal explanation of the experimenter.
They were told about the binary (left � off, right � on) nature of
the switches and the difference between broken and working
switches. Depending on the condition, participants were then told
that they had to identify the one working switch (sparse condition)
or the one broken switch (dense condition). Before starting the
task, participants in both conditions were shown the same two
demonstration trials. First, while the activation toggle was turned
off, the experimenter turned all six switches to their “on” position
and subsequently turned on the activation toggle, causing the
wheel to spin. Second, after turning the activation toggle off again,
the experimenter set all switches to their “off” state and turned the
activation toggle back on, which did not cause the wheel to spin.

In the main part of the experiment, participants could repeatedly
test different settings of the switches to find out which one was broken
or working. On each trial, they could change the switches in any way
they liked while the activation toggle was turned off. They could then
test their chosen switch setting by turning the activation toggle on and
observing the effect on the wheel. Before the start of each new trial,
the activation toggle had to be turned off again.

To incentivize participants to be efficient (i.e., to use as few
trials as possible), they had to pay one of their six plastic tokens
(worth $0.50 each) each time they performed a test by inserting it
into a coin slot on the box. Participants could test the box up to six

Outcome: 
Wheel

Variables: 
Switches

Activation
Toggle

Figure 2. A photograph of the control interface on the wooden box used
in Experiment 1. See the online article for the color version of this figure.
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times (hence the use of six tokens) but could stop whenever they
were ready to make their judgment. After their final test, they had
to indicate to the experimenter which of the switches they thought
was broken or working. If their choice was correct, they could
trade in any remaining tokens for their corresponding monetary
value. If their choice was incorrect or they used up all their tokens,
they received no bonus.

Results and Discussion

Performance. Before comparing strategies in detail, we eval-
uated the overall performance in the task. Final accuracy in iden-
tifying the working or broken switch at the end was 100% in the
sparse condition and 80% in the dense condition. This difference

was not statistically significant (Fisher’s exact test, 95% confi-
dence interval [CI] [0.43, �], p � .22). On average, participants
made 3.6 (SD � 1.45) interventions in the sparse condition com-
pared with 4.6 (SD � 1.92) interventions in the dense condition.
Note that this difference is in line with the predictions of the EIG
analysis reported above (the EIG-optimal strategy in the dense
condition requires more steps), but given the number of partici-
pants in this experiment, this was not statistically significant,
t(28) � 1.61, 95% CI [�0.27, 2.27], p � .12.

Strategy classification. To characterize participants, behavior
over multiple trials, we used the same strategy classification
scheme across all experiments. Table 1 provides a sequence of
example trials that would have been classified as each strategy.

Table 1
Example Sequences of the First Three Trials for Different Strategies Given Six Binary Variables

Strategy Example

Pure test one: Test one on all trials
s1
s2
s3
s4
s5
s6

�
1 0 0
0 0 1
0 0 0
0 0 0
0 1 0
0 0 0

�
t1� t2� t3?

. . .

Noisy test one: Test one with interspersed 0-EIG trials
s1
s2
s3
s4
s5
s6

�
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0
0 0 0

�
t1� t2� t3?

. . .

Pure test half: Test half on all trials
s1
s2
s3
s4
s5
s6

�
1 0 0
1 0 0
1 0 0
0 1 0
0 1 1
0 0 0

�
t1� t2� t3?

. . .

Pure test multiple: Test multiple on all trials
s1
s2
s3
s4
s5
s6

�
1 0 0
1 0 0
0 1 0
0 1 0
0 1 1
0 0 0

�
t1� t2� t3?

. . .

Noisy test multiple: Test multiple with interspersed 0-EIG trials
s1
s2
s3
s4
s5
s6

�
1 0 0
1 0 1
1 0 0
0 1 0
0 1 0
0 0 0

�
t1� t2� t3?

. . .

Note. Trials on which the outcome occurred are denoted with a plus (�). The outcome of the third trial has no impact
on the actions depicted in this table. Note that participants were classified based on their sequence of tests up to the
point at which an optimal learner would have been able to correctly identify the working or broken switch (i.e., the
point at which the expected information gain from Equation 2 was zero for every kind of test). Some participants made
further unnecessary tests that we report and analyze in separate parts of the Results sections. EIG � expected
information gain.
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Note that in the upcoming strategy definitions, we use the term
zero EIG to refer to trials in which the participants’ test could not
yield any additional information according to the EIG equation
described above (Equation 2). Zero EIG could result, for example,
from a participant testing the same switch twice or turning on
multiple variables in the dense condition (which would yield any
additional information because the outcome always occurred).
Furthermore, we will use the term potential causes to designate
variables that, according to the EIG-optimal actor, could still be
causes of the outcome. Conversely, noncauses are variables that a
participant has ruled out through prior tests. The strategy defini-
tions are as follows:

• Test one: The participant followed the controlling vari-
ables principle and tested a single switch on every trial,
while turning off any potential causes.

• Pure test one: The participant used test- one on all trials.
• Noisy test one: The participant used test one with inter-

spersed zero EIG trials.
• Test multiple (sparse condition only): The participant

turned on several switches on every trial. Importantly, this
strategy could only be used in the sparse condition, be-
cause manipulating more than one switch in the dense
condition always led to zero EIG.

• Pure test half: Participant manipulated exactly half of the
remaining potential causes on every trial (rounding odd
numbers up or down).

Pure test multiple: The participant turned on several (but not
always exactly half) of the remaining potential causes on every
trial. Note that it was possible that a participant in this category
used a forward-looking strategy, which does not require testing
exactly half (see Appendix A).

Noisy test multiple: The participant used a test-half or test-
multiple strategy but with interspersed zero EIG trials.

Note that with an odd number of potential causes, both rounding
up and down from the central value gets counted as a viable testing
half/multiple strategy. That means that on a trial with three re-
maining variables, changing one can actually be part of the test-
half/test-multiple strategy (see the last trial of pure test multiple in
Table 1, for example).

• Other: Any strategy that does not fall into the above catego-
ries. This also included participants who switched back and
forth between testing one and testing multiple. For example,
this category would include participants who started testing
variables one by one and then changed their strategy to
changing half of the variables, and vice versa.

The goal of these definitions was to strike a balance between
accurately summarizing our participants’ behavior and parsimony
in terms of the number of categories we assigned. Throughout this
article, we report additional behavioral markers of strategy use in
addition to these categories to ensure that we provide a compre-
hensive picture of the data.

Strategy. Table 2 shows the number of participants classified
into all strategy types described in the previous section. Note that
not all of the strategy types appeared in this experiment (there were
no test-multiple or noisy-test-multiple participants).

To simplify analyses, we further grouped participants as either
using a test-one (includes test one and noisy test one), test-multiple

(includes test half, test multiple, and noisy test multiple), or other
strategy. Figure 3 shows the number of participants in each of
those broader strategy categories. The number of participants using
a test-one strategy was lower in the sparse condition (four in 15 vs.
14 in 15, Fisher’s exact test, 95% CI [0.0006, 0.31], p � .001).
However, even in the sparse condition, approximately one quarter
of the participants decided to change one variable at a time.

Note that all of the participants in the test-multiple group of the
sparse condition actually manipulated exactly half of the switches
(see Table 2). This finding supports the fact that the myopic EIG
model is a better description of behavior than the optimal planning
model that is briefly mentioned above (see Appendix A for de-
tails). Indeed, although the optimal planning model assigns equal
value to manipulating two, three, and four variables on the first
trial of Experiment 1, we only observe people manipulate exactly
half.

Stopping. We found that one third (�33%) of participants
made at least one additional intervention at the point when, ac-
cording to the EIG-optimal actor, they should have identified the
solution already. The number of such “unnecessary” tests was
higher for participants in the sparse group (�47% compared with
20% in the dense group), but this difference did not reach statis-
tical significance (Fisher’s exact test, 95% CI [0.55, 26], p �
.245). The sample size of this experiment makes it unfeasible to
look for factors that affect whether participants with no remaining
uncertainty made additional interventions. We will return to this
question in discussing the remaining experiments with a larger
sample size.

When modeling each participant’s sequence of tests, it was
revealed that only 60% of participants in the dense group had
completely resolved their uncertainty (had zero Shannon entropy
according to Equation [5]) about the broken switch by the time
they stopped conducting tests and made a choice. Conversely, in
the sparse group, all participants had resolved their uncertainty
completely (the difference between conditions was significant;
Fisher’s exact test, 95% CI [1.5, �], p � .017). Out of the six
participants who stopped before reaching certainty in the dense
group, four did so because they used a noisy test-one strategy and
had reached the last trial (Trial 6), which meant they had to stop
because they used up all the given tokens. One participant stopped
after only two tests with a high risk of making an incorrect guess.
Finally, the last participant among the early stoppers chose to
guess with only two candidate switches remaining (thus with a 0.5
chance of guessing correctly), which is actually among the optimal
stopping strategies predicted by an optimal planning model (see
Appendix A).

In sum, as predicted by the EIG-optimal actor model, this
experiment found that instructing participants to expect either a
sparse (one cause in six variables) or a dense (five causes in six
variables) environment had an effect on how they manipulated the
set of six variables. This confirms that people’s prior beliefs about

Table 2
Detailed Strategy Use in Experiment 1

Condition Pure test one Noisy test one Pure test half Other

Dense 7 7 0 1
Sparse 3 1 8 3
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the sparsity of their environment can induce changes in strategy
selection. However, another intriguing result of this experiment is
that even in the sparse condition, a proportion of participants
adhered to the controlling variables principle and used a test-one
strategy. We will address this finding in the results and discussions
of the remaining experiments (particularly Experiments 3 and 4).

Because this experiment was designed to test in-lab instructions
and the sparsity manipulation, we lacked sufficient sample sizes
for some of the analyses based on subsets of participants. How-
ever, this study still revealed some trends indicating potentially
interesting patterns in stopping behavior that differed between
conditions. In particular, participants in the sparse group were
more likely to make further, unnecessary tests. We will continue
exploring these differences in the next experiments.

Experiment 2: Manipulating the Number of Variables

In addition to the number of causes, our computational analyses
show that the total number of variables affects the sparsity of
causal systems. In Experiment 1, the benefit of testing multiple
variables over testing variables one by one was relatively modest.
In fact, testing half of the variables in the sparse condition would
save participants less than one step (two thirds of a step), on
average, compared with testing variables individually (this differ-
ence translated to an average saving of �$0.33). This may not
have provided sufficient incentive for participants to realize that a
test-half strategy would be more advantageous. One way to am-
plify the potential impact of the sparsity manipulation is to include
more variables (see Figure 1). Figure 4 shows the average number
of trials (causal tests) needed to find the working switch for a
learner in a sparse (one cause) environment employing either a
test-one or a test-half strategy depending on the number of
switches available. We can see that as the number of switches
increases, so does the benefit of the test-half strategy over the
test-one strategy.

To test whether people are sensitive to the degree of sparsity,
Experiment 2 manipulated the number of variables (switches).
Participants on Amazon Mechanical Turk completed the same task
as in Experiment 1 (modified for presentation over the web) but
were presented with either four, six, 10, or 20 switches (all
manipulations were between subjects). As before, they were given
either sparse (one switch working) or dense (all but one working)
instructions (see Appendix B for details). Although adding vari-
ables should have no effect on behavior in the dense condition, we
decided to keep the manipulation to ensure that adding variables

does not encourage a general increase in the number of variables
participants would test on each trial. By including the six-switches
condition again, this experiment also served to replicate the results
from Experiment 1 with an online sample.

Method

Participants. One hundred thirty-one participants (73 males)
were recruited on Amazon Mechanical Turk (15 to 18 per cell).2

Recruitment was restricted to AMT workers within the United
States aged 18 years or above. Participants were paid $0.50 for
their participation, with the possibility of earning an additional
bonus of up to $1.00. Approval for this study was obtained by New
York University’s IRB under the protocol “Active Learning in
Dynamic Task Environments” (IRB-FY2016-231).

Stimuli. The task from Experiment 1 was adapted as faithfully
as possible to be run on the web, with some minor changes (see
Figure 5). Again, switches could be turned on (green) or off (red).
Instead of a wheel, the outcome of interest was a light bulb, which
lit up when it was turned on and remained gray otherwise. The red
activation toggle needed to be in its “on” position for the switch-
board to work. When the switch box was turned on, the green
indicator light to the left of the activation toggle shone bright
green. The coin slot on the top right corner of the switchboard
would show a brief animation of a coin being inserted whenever a
participant made an additional test.

Procedure. The experiment followed a 4 � 2 between-
subjects design. Participants received different versions of the task
with either four, six, 10, or 20 switches (as shown in Figure 5) and
were given either the sparse or the dense instructions.

The procedure was the same as in Experiment 1. Participants
received similar instructions (but written) and were also asked to
perform two demonstration trials, in which first all and then none
of the switches were turned on, to show that the light bulb would
turn on and stay off, respectively. The per-trial payment was
adjusted depending on condition, such that participants had to pay
either $0.25, $0.16, $0.10, or $0.05 per additional test in the four-,
six-, 10-, or 20-switches conditions, respectively. These payments
were chosen so that the total potential bonus (starting at $1.00)
would be zero if participants decided to test every single switch in
isolation. The remaining bonus was shown to participants to the
right side of the switchboard.

At the beginning of a trial, participants could click on as many
switches as they wanted to turn them on or off. They then had to

2 Sample size was chosen to match the previous experiment (fluctuation
in sample size resulted from Mechanical Turk dropouts) because it was
sufficient to detect differences between the sparse and dense groups in
terms of strategy use. Furthermore, the data for some analyses (e.g.,
stopping) could be pooled across conditions, which is why we still antic-
ipated benefitting from greater power based on the observed in this exper-
iment compared with Experiment 1. A post hoc power calculation sug-
gested by a reviewer, of the nonsignificant main effect of condition on
number of interventions in Experiment 1, yielded .37. This indicates the
study may have been somewhat underpowered for detecting this particular
effect. The power of Experiment 2 to find the commensurate effect in its
larger sample (pooling across number of switches) was .94. Because we
expect this effect to be larger for devices with more switches, and the
setting in Experiment 1 was at the low end of the range, this is a
conservative estimate. Participants indicated their age, but it was not
recorded because of a coding error.
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Figure 3. Strategy classification in Experiment 1.
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turn the activation toggle on to observe the effect of the light bulb.
Every time they turned on the activation toggle and saw the
outcome, the cost of this test was automatically deducted from the
total bonus shown on the side of the screen. Participants could then
either make another test or click a button to proceed to the final
choice. Before each new test, they had to turn the activation toggle
off again. In the choice phase, participants were asked to click on
the one switch that was broken or working and confirm their
choice before receiving feedback.

Results

Performance. Pooling across the four groups with different
numbers of switches, participants in the sparse conditions made

fewer interventions (M � 4.17, SD � 2.98) than in the dense
condition (M � 8.91, SD � 8.01), t(129) � 4.5, 95% CI [2.7, 6.8],
p � .001. They were also more likely to make the correct choice
at the end (76% vs. 43% correct, Fisher’s exact, 95% CI [1.8, 9.4],
p � .001). As the EIG analysis predicted, this efficiency differ-
ence was disproportionately driven by participants in the groups
with larger numbers of switches. To illustrate this, Figure 6A
plots the average number of tests participants needed to find the
correct solution in every experimental group. It shows that that
the number of trials participants saved in the sparse condition
compared with the dense condition increased from 0.15 trials in
the four-variable condition to 6.53 trials in the 20-variable
condition. This finding qualitatively matches the EIG-optimal
actor predictions in Figure 4.

Strategies. Table 3 shows the detailed strategy use per group,
based on the definitions described in the results section of Exper-
iment 1. Again, we further collapsed these data into three strategy
types (test one, test multiple, and other). The results for these
summary strategies is shown in Figure 6B. As expected, the vast
majority of participants in the dense group adopted a test-one
strategy for all levels of the number of variables. In the sparse
condition, on the other hand, the proportion of test-one users
varied with the number of switches (Fisher’s exact test with null
hypothesis of equal proportion of test-one to test-multiple partic-
ipants in each group of number of variables, p � .023).

Figure 6C shows how many variables participants manipulated
on their very first trial. As in Experiment 1, participants who did
not use the test-one strategy were particularly likely to change
exactly half of the switches (see black dotted lines). However, we
found some variance in the number of switches changed, particu-
larly in the 10 and 20 switches group. Some participants chose to
manipulate slightly fewer than half and some chose to manipulate
considerably fewer (e.g., three in 10 or six in 20 switches). Recall
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Figure 4. Expected number of trials needed to find the working switch in
the sparse condition when using a test-one or test-half strategy.

Figure 5. Switchboard presented to participants in Experiments 2 to 4. Experiment 2 varied the number of
switches on the board (four, six, 10, or 20). See the online article for the color version of this figure.
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that the cost-minimizing strategy from an optimal planning model
(described in Appendix A) actually reveals that testing slightly
fewer or more than half is an equally good strategy in terms of
expected value (see Table A1 in Appendix A). This is because it
can increase the likelihood of a “quick win” if the working switch
happens to be in the smaller of the two subsets. Thus, some of
these participants were still following an optimal strategy. Further-
more, even among suboptimal participants, some still acted much
more efficiently than test-one participants. For example, testing six
in 20 variables will still eliminate 8.4 variables, on average, from
the set of potential causes (there is a 6/20 chance of the light
turning on, thus eliminating 14 variables and a 14/20 chance of the

light staying off, thus eliminating six variables), whereas manip-
ulating one in 20 eliminates only 1.9 on average. In sum, adding
more variables increased the number of participants in the sparse
condition who adopted more efficient strategies (i.e., testing mul-
tiple variables) than testing one variable at a time.

Stopping. As in Experiment 1, we again found that some
participants (21% overall, with 23% in the dense and 18% in the
sparse condition) chose to perform further tests after they had
identified the broken or working switch (at least from the perspec-
tive of an optimal learner yoked to their choices). With the larger
sample size in this experiment, we could further analyze factors
that influenced whether or not participants conducted unnecessary
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Figure 6. Results from Experiment 2. (A) Average number of interventions that participants in each group
needed to find the working/broken switch. (B) Strategy classification. (C) Number of switches manipulated on
Trial 1. Dotted lines indicate half of the total number of variables. TO � test one; TM � test multiple.

Table 3
Detailed Strategy Use in Experiment 2

Variables Sparsity Pure test one Noisy test one Pure test half Pure test multiple Noisy test multiple Other

4 Dense 10 5 0 0 0 2
4 Sparse 9 1 5 0 0 1
6 Dense 7 4 0 0 0 4
6 Sparse 7 1 4 1 3 0

10 Dense 7 5 0 0 0 3
10 Sparse 3 0 4 6 3 0
20 Dense 2 13 0 0 0 3
20 Sparse 2 2 2 7 3 2
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tests. In particular, we were interested in whether observing the
outcome of interest (i.e., the light turning on in the sparse condition
or the light not turning on in the dense condition) influenced
people’s stopping decisions. What allowed us to do this analysis is
that sometimes the working or broken switch can be identified
without ever seeing the relevant outcome, simply by ruling out all
other possibilities. The analysis was conducted separately for the
sparse condition (in which the relevant outcome was the light
turning on) and the dense condition (the relevant outcome was the
light not turning on). In the sparse condition, we found that among
participants who, according to an optimal learner, had identified
the correct switch, those who had not yet observed the outcome
were more likely to make additional interventions than those who
had activated the working switch and seen it cause the outcome
(six out of seven vs. six out of 48; Fisher’s exact test, 95% CI [3.7,
1947], p � .001). However, in the dense condition, among those
participants with enough information to identify the broken switch,
the group that had not yet tested it was no more likely to make
additional tests than those that had tested it (two out of seven vs.
13 out of 31, Fisher’s exact test, 95% CI [0.05, 4.1], p � .68).

Among those participants who stopped before finding the bro-
ken switch in the dense condition, we found relatively little evi-
dence for such “rational guessing.” Only two of 24 of those who
stopped before their bonus ran out (while they could still gain from
guessing) did so at a point at which it was optimal (that is, guessing
was at least as good as continuing).

Discussion

These results provide further evidence that information about
sparsity affects how people intervene on multiple-variable sys-
tems. On average, participants in the sparse group were more
likely to manipulate multiple variables at a time, whereas those in
the dense group were more likely to follow a controlling variables
strategy (test one). This replicates the main result from Experiment
1 and qualitatively matches the predictions of the EIG-optimal
actor analysis. Furthermore, this effect was strongly affected by
the total number of variables in the system. The more switches
were presented to participants (the more sparse the environment in
the sparse condition, and the more dense the environment in the
dense condition), the more prominent was sparse participants’ use
of a test-multiple strategy. Again, this finding is in line with our
EIG analysis.

However, this experiment also showed, even more strongly than
Experiment 1, that the test-one strategy is a common choice even
for participants in the sparse condition, who would be better off
manipulating multiple variables. In fact, in the four- and six-switch
conditions, testing one variable was at least as common as testing
multiple. Again, this suggests that in the absence of a strong
incentive to do otherwise, many people have a tendency to change
variables individually. We further address this finding in the fol-
lowing experiments.

Finally, the experiment revealed an interesting pattern in par-
ticipants’ decisions to stop or continue making tests once they
identified the relevant switch. In the sparse condition, participants
often chose to make such additional tests when they had not yet
observed the light turn on. This finding mirrors research on many
other hypothesis-testing tasks suggesting that people have a bias to
verify or confirm their hypotheses, even if doing so does not lead

to additional information (e.g., Klayman & Ha, 1987; Nickerson,
1998; Ruggeri et al., 2016). In causal intervention tasks, such a
tendency has specifically manifested itself in a preference for
producing the positive effects (variables turning on) that a partic-
ular hypothesis entails (Bramley et al., 2017; Coenen et al., 2015).
Because we did not find that participants in the dense group tried
to create the expected noneffect, this experiment provides further
evidence for this preference to verify positive outcomes in causal
systems. We continue to address this question in Experiment 4 and
the General Discussion.

Experiment 3: No Sparsity Information

Although many subjects automatically switched to a test-
multiple strategy in Experiments 1 and 2, a distinct subset contin-
ued to test-one variable at a time even in sparse environments. One
possible explanation for this finding is that controlling variables
acts as a kind of behavioral default when people are not given any
information about the sparsity of a system. If this is the case, then
some participants may have used a test-one strategy in earlier
experiments if they were unsure or did not pay enough attention to
the sparsity instructions. To explore this possibility, Experiment 3
explored what strategy people use to test a multivariate system
when they are offered no explicit expectations about the number of
causes in the instructions. If test one is indeed people’s default
strategy, we would expect participants to use it when testing under
this new condition.

Method

Participants. Fifty-seven participants (35 males; Mage � 36,
SDage � 13) were recruited on Amazon Mechanical Turk (AMT).3

Recruitment was restricted to AMT workers within the United
States aged 18 years or above. Participants were paid $0.50 for
their participation, with the possibility of earning an additional
bonus of up to $1.00. Approval for this study was obtained by New
York University’s IRB under the protocol “Active Learning in
Dynamic Task Environments” (IRB-FY2016-231).

Stimuli. Materials were the same as the six switch condition
of Experiment 2. In a between-subjects design, participants were
again randomly assigned to a switchboard that either had one
broken or one working switch.

Procedure. The procedure was the same as in the previous
experiment, with the exception that participants were given the
same set of instructions in both conditions. Instead of being told to
find the one broken or one working switch, they were instructed to
“find out which switch(es) are working or broken.” After the
switch testing phase, participants were asked to indicate which
switch(es) were working or broken, now being able to make
multiple selections.

Results and Discussion

In analyzing behavior from this experiment, we focused on the
number of switches manipulated on the first trial of the experi-

3 Based on previous experiments, we had no expectation about people’s
behavior in the absence of any sparsity instructions, and we therefore
decided to use a larger sample size. With an initial goal of 60, the final
number came about through irregular posting of AMT tasks.
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ment, which is the most informative trial to reveal their naive
expectations. Analyzing their trial-by-trial behavior using the clas-
sification scheme from earlier experiments was infeasible here,
because it would require knowing participants’ prior beliefs over
the number of causes. Figure 7 shows the proportion of partici-
pants that chose to turn on any possible number of switches on the
very first trial. Data is collapsed over both conditions because the
initial instructions were the same and hence the first trial should
not lead to different behaviors. The majority of participants (58%)
chose to manipulate a single switch, with only 10% manipulating
half. The frequency of different numbers of manipulations differs
substantially from the probability of manipulating different num-
bers of switches at random (.02, .09, .23, .31, .23, .09, .02),
	2(5) � 170, p � .001.

This supports the idea that test one may be many people’s
default strategy in the absence of more specific knowledge about
their environment.

Note that an optimal learner initialized with a flat prior over all
possible distributions of working or broken switches also assigns
higher EIG to testing one over testing multiple variables. There-
fore, preference for controlling variables found in this experiment
might be a consequence of participants selecting the most infor-
mative strategy given their knowledge of the system. Similarly, it
is possible that participants who tested variables individually in the
sparse condition of earlier experiments simply ignored our instruc-
tions about the number of causes and acted as if they knew nothing
about the sparsity of the system. If that was the case, their behavior
would still be in line with the optimal actor analysis and not
necessarily a consequence of a test-one “default.”

Experiment 4: Repeated Interaction With
Sparse System

Experiment 3 showed that when they are not offered specific
prior information about sparsity, people have a strong preference
for testing variables individually. In Experiment 4, we wanted to
know to what extent using the test-one strategy in sparse condi-
tions of earlier experiments was driven by a similar lack of
knowledge about the system (e.g., a flat prior over all hypotheses)
versus a default bias toward testing variables individually.

To test this, we had participants interact repeatedly with multi-
ple sparse systems. Unlike Experiment 3, we also gave them the
explicit sparsity instruction again (see Appendix B). This allowed
them to learn about sparsity not only through instructions but also
through direct experience. If people used the test-one-strategy

because they doubted (or didn’t pay attention) to our instructions
about sparsity, we expected that direct experience should mitigate
this effect of prior belief and motivate them to develop the optimal
strategy over time. If, on the other hand, some participants have a
genuine bias toward the test-one strategy, we expected them to not
change their behavior over multiple exposures with sparse sys-
tems.

Method

Participants. Thirty-seven participants (26 male; Mage � 25,
SDage � 11) were recruited on Amazon Mechanical Turk.4 Re-
cruitment was restricted to AMT workers within the United States
aged 18 or above. Participants were paid $1.00 for their partici-
pation, with the possibility of earning an additional bonus of up to
$1.00. Approval for this study was obtained by New York Uni-
versity’s IRB under the protocol “Active Learning in Dynamic
Task Environments” (IRB-FY2016-231).

Stimuli. Materials were the same as the sparse condition, with
six switches in Experiment 2. However, each participant tested
five different switchboards sequentially. Each board had a differ-
ent color, and the order of colors was randomly chosen for each
participant. As before, the working switch of every switchboard
was randomly generated.

Procedure. Participants received the same instructions as in
the sparse condition of Experiment 2, with the slight modification
that they were told they would be testing five switchboards, not
one. They were still told to expect one working switch per switch-
board and were reminded of this again before interacting with each
of the five switchboards. The final bonus payment was determined
by randomly selecting one of the five switchboards at the end of
the task and paying participants the bonus gained from testing it.

Results and Discussion

Performance. Across all switchboards, participants made
3.01 interventions per board, on average, and there was no signif-
icant increase or decrease with board number (r � �0.03, n �
185, 95% CI [�0.17, 0.11], p � .68). Overall, participants isolated
the correct working switch 88% of the time (from an optimal
learner’s perspective). Although this number was lowest on the
very first switchboard (78%), there was no significant overall
effect of board number on the probability of isolating the correct
switch (logistic regression with board number predictor, z � 1.56,
95% CI [�0.06, 0.57], p � .12).

Strategy. The crucial question we asked with this experi-
ment was whether participants who started out using the less
efficient test-one strategy would learn over time that they could
be more efficient by manipulating multiple switches. Table 4
shows the detailed breakdown of the number of participants

4 We had an initial goal of collecting data from 40 participants, three of
which were not collected because the AMT assignments timed out. The
initial goal was based on the observation that just under half of the
participants in the sparse conditions of previous experiments used a test-
one strategy. Because those were the participants we were interested in, we
decided to collect a little more than double the number of participants
compared with the cell sizes in Experiments 1 and 2. We had no a priori
expectation of propensity to switch strategies with experience on which to
base additional power analyses.
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Figure 7. Experiment 3: Number of switches tested on the first trial after
being given instructions to “find which switch or switches were working or
broken.”

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1934 COENEN, RUGGERI, BRAMLEY, AND GURECKIS



using each of the strategies defined in the Results section of
Experiment 1. Figure 8A and B shows the number of switches
participants manipulated on the first trial of each of the five
switchboards as well as their higher-level strategy classifica-
tions. First, note that the results from the first board (top row)
fall somewhere between the strategy distributions found in
Experiment 1 and Experiment 2 (six-switches condition). Al-
though more participants adopted a strategy of changing mul-
tiple variables, a substantial number of participants used a
test-one strategy. Second, this pattern remained remarkably
stable as participants interacted with the remaining four switch-
boards. Even on the final iteration of the experiment, more than
one third of the participants tested variables one by one. The
distribution of strategies did not depend on board number
(Fisher’s exact test, p � .96). To check that this pattern holds
at the level of individual participants, consider Figure 8C,
which compares the number of switches participants manipu-
lated on the first trial of Board 1 and on the first trial of Board

5 as a transition heatmap. It shows that the majority of partic-
ipants manipulated the same number of switches on the first and
last board (black squares). In fact, of the 14 participants who
tested a single variable on Board 1, only one switched to testing
half by the time they were interacting with Board 5.

Interestingly, there was no significant strategy difference in terms
of the number of tests participants conducted (M � 2.90 for test-
multiple participants, M � 3.06 for test-one participants). However,
participants who tested multiple variables were more likely to have
isolated the working switch by the time they finished testing (95%
compared with 78%; Fisher’s exact test, p � .001). Thus, there was
still a clear advantage of using the test-multiple strategy, even if it did
not reflect in the number of tests people made.

Stopping. As in the previous experiments, participants some-
times conducted additional tests after they found the solution.
There was a suggestive decreasing trend of the probability of
making further unnecessary tests with board number (logistic
regression with board number predictor, z � �1.93, 95% CI

Table 4
Detailed Strategy Use in Experiment 4

Board no. Pure test one Noisy test one Pure test half Pure test multiple Noisy test multiple Other

Board 1 13 0 14 3 3 4
Board 2 12 1 15 4 2 3
Board 3 14 0 15 4 2 2
Board 4 13 0 17 4 1 2
Board 5 12 0 13 7 4 1

Figure 8. Experiment 4 results. (A) Number of switches turned on during the first trial of every switchboard
(Board 1 corresponds to first and Board 5 to last switchboard that participants interacted with). (B) Strategy
classification. Note that the number of test-one participants remains constant. (C) Number of participants
choosing to manipulate a given number of switches on the first trial of Board 1 (x) and Board 5 (y). The vast
majority used the same strategy on both boards.
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[�.68, 0.006], p � .054). Whereas on the first board, 19% of
participants chose to do so, only 5% did so on the final (fifth)
board. Overall, we found that participants were more likely to
conduct unnecessary tests when they had not yet observed the
light turn on. They made additional tests on 10 out of 23 of
those trials compared with 11 out of 139 (Fisher’s exact test,
95% CI [2.8, 28], p � .001). This replicates the stopping results
found in Experiment 2.

Experiment 4 found that people’s strategies remained largely
static over multiple instances of interacting with sparse systems. It
therefore further strengthens the finding that a tendency to control
variables can act as a persistent behavioral default. Recall that
before testing each new switchboard, participants were once again
reminded of the fact that only a single switch was working, and
their repeated exposure of the task should have strengthened this
belief. Thus, it seems unlikely that, in prior experiments, test-one
participants ignored our prior instructions about sparsity and based
their strategy on a flat prior belief over all possible structures.

General Discussion

In this article, we investigated how people test multivariate
causal systems with a single outcome of interest. Using an optimal
actor model, we showed that the most efficient strategy crucially
depends on a learner’s belief about the causal sparsity of the
system, that is, on the density of causes among the total number of
variables. When there are many possible causes, learners are best
off adhering to a controlling variables principle—operationalized
here as a strategy of turning on variables one by one—to isolate the
specific effect of every variable without the confounding influence
of the others. If there are only very few causes among variables, it
becomes more beneficial to test multiple variables at once to
quickly narrow down the space of actual causes. Our behavioral
experiments investigated what strategies people use to test multi-
variate systems and whether their knowledge about causal sparsity
had any effect on their choices. Two main findings emerged from
these experiments.

First, as predicted by the EIG-optimal actor model, participants
adapted their behavior based on knowledge about the causal sparsity
of a system (Experiments 1 and 2). When causes were sparse (only
one cause), they frequently chose to manipulate multiple (often half of
the) candidate variables. In dense tasks (N-1 causes), they were more
likely to test one variable at a time. We also found that increasing the
degree of sparsity or density, by increasing the total number of
variables, amplified this effect on people’s strategies because it mag-
nifies the benefits of the more effective strategy (Experiment 2). In
sparse systems with more variables, people were more likely to
manipulate multiple or half of the variables.

Second, we also found a number of ways in which subjects devi-
ated from the predictions of the EIG analysis. Most strikingly, across
all experiments with a sparsity manipulation (i.e., all except Experi-
ment 3), many participants showed a tendency to test variables one by
one even if it was more efficient to test multiple variables at once.
Even after several repetitions of the task, those who started testing
variables one by one were very unlikely to switch to the more efficient
strategy (Experiment 4). We also found that participants using either
strategy often continued to collect redundant (costly) information after
having already learned enough to know the correct answer. Like in
Experiment 2, they were more likely to do so when they had not yet

observed the light turn on, which reveals a particular preference for
collecting confirmatory evidence that has been found in other hypoth-
esis testing tasks.

In the remainder of this article, we discuss how these findings
contribute to our understanding of how people should and do
approach multivariate systems and how they shed light on impor-
tant determinants of strategy use during causal exploration.

Ecological Rationality of Experimentation Strategies

In the educational literature, the controlling variables principle
(here, the test-one strategy) is treated as a hallmark of scientific
thinking and optimal experimentation (Chen & Klahr, 1999; In-
helder & Piaget, 1958; Kuhn et al., 1995). As we show in our
modeling analyses, this gives an incomplete picture of the right
approach to experiment on multivariate systems. Although it is
true that controlling variables is the most efficient strategy under a
variety of different assumptions, it is clearly inferior in sparse
systems, especially when there are many variables. Our analysis
thus demonstrates the importance of examining the ecological
validity of strategies (Goldstein & Gigerenzer, 2002; Parpart et al.,
2018; Ruggeri & Lombrozo, 2015; Todd & Gigerenzer, 2012), that
is, the fit between a strategy and the environment it is used in.

Taking this ecological perspective allowed us to detect a novel
finding with respect to the adaptive nature of people’s causal
experimentation strategies. This finding tallies with other recent
work on causal interventions, which showed that people’s strategy
choices were made adaptively with respect to internal constraints,
like cognitive load, and external factors, like the match of a
strategy and the task environment. For example, Coenen et al.
(2015) found that people were more likely to choose a simpler,
heuristic intervention strategy when put under time pressure, but
adopted the more complex information-maximizing strategy in an
environment that was designed to yield poor results from using the
heuristic. The current finding adds to this result by demonstrating
that explicit (instructed) prior knowledge about the environment
can also affect people’s strategies in an adaptive manner.

In finding that sparsity affects behavior, our experiments also add
to recent evidence from a noncausal information search task that
manipulated hypothesis sparsity. In a spatial search task, similar to the
game Battleship, Hendrickson et al. (2016) gave people different
instructions on the number of tiles on the game board that were taken
up by hidden ships. Participants were then given the option to reveal
either a ship tile or a nonship (i.e., water) tile. Participants changed
their strategy depending on the prior instructions. When they expected
few ship tiles (sparse hypothesis space), they chose to reveal ship tiles,
and when they expected many ship tiles (dense hypothesis space),
they chose to see water tiles. Although their definition of “sparsity” is
slightly different than the one used in this article (because of the
different nature of the two tasks), both articles show how people’s
metabeliefs about a hypothesis space impact their information seeking
behavior.

Controlling Variables Default

The fact that a substantial number of participants chose to test
one variable at a time even in sparse environments was not a
finding we anticipated. It is particularly surprising given the pre-
vious literature on scientific experimentation. Teaching children to
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control variables has frequently been shown to be a rather arduous
task (Chen & Klahr, 1999), and even adults sometimes have a hard
time adopting this strategy (Kuhn et al., 1995). However, partici-
pants in our experiments were not only able to use the strategy
successfully when it maximized information, as they sometimes
persistently used it when it did not. This shows that there is a
potential limit to the ecological rationality claim of the previous
section. Whereas the degree of sparsity in the environment had an
impact on people’s initial strategy selection, this selection appears
immutable for at least some time, even when experience should
demonstrate that a test-one strategy is inefficient.

We consider a number of explanations for this finding. First, in
the education literature, experimentation strategies are often
probed by giving participants a single forced choice between a
nonconfounded test (one variable changed) and a confounded test
(multiple variables changed; see Chen & Klahr, 1999; Kuhn &
Brannock, 1977). However, it is less common to allow participants
to conduct and observe the results of multiple experiments in
sequence, which poses the challenge of interpreting the outcomes
of multiple experiments, integrating them with existing knowl-
edge, and memorizing past results (Fernbach & Sloman, 2009).
Because of these additional cognitive requirements, it is possible
that the sequential nature of our experiments motivated a portion
of participants to use a strategy that keeps the demands on storage
and integration of evidence manageable. Ruling out variables one
by one has an advantage over testing half in this respect, as it only
requires reasoning about a single variable on every trial. This
explanation would be in line with a recent finding by Bramley et
al. (2017), who showed that in more complex and open-ended
causal intervention experiments, people have a preference for
holding many variables constant in order to test fewer variables at
a time, presumably to minimize cognitive effort. Note that re-
peated exposure to different systems, as in Experiment 4, does not
change the fact that testing multiple is more effortful, so this
interpretation explains the observed behavior (people not changing
strategy even with repetition).

Another contributing factor might be that changing one variable
at a time is explicitly taught in STEM classes as the main method
for scientific experimentation (e.g., National Academy of Sci-
ences, 2013; National Research Council, 1996). It is possible that
students are so well trained in this strategy that they start adopting
it as a default for any experimental situation and only alter it if the
environment seems particularly unsuitable (e.g., when it is very
sparse). If so, the present studies raise the question of whether this
curriculum standard might, in some cases, hinder efficient exper-
imentation by promoting a narrow focus on the idea of testing
variables individually irrespective of the specific situation. This
perspective lines up with recent work arguing that the kind of
broad exploration often exhibited by children is actually beneficial
for their learning because it allows them to explore a wider number
of hypotheses before becoming more targeted in their information
search behavior (e.g., Lucas, Bridgers, Griffiths, & Gopnik, 2014).
Also, testing multiple variables at once can be a reasonable strat-
egy from a purely scientific perspective. For example, during
exploratory research, it is common to change multiple factors and
see if any of them have an effect on some outcome before honing
in more precisely on the factor(s) that are responsible. Thus, rather
than teaching students a single strategy for designing experiments,
we should offer them a toolbox of strategies and teach them to

choose the right strategy for their question and prior knowledge
about a domain. To substantiate such speculations about the impact
of instruction on the test-one bias, it would be worthwhile to
investigate strategy use in children of different ages and at differ-
ent stages of their education. The authors of this article are cur-
rently pursuing this developmental direction using a similar para-
digm to the one used in this article.

In addition to explicit instruction of the controlling variables prin-
ciple, it is possible that people learned it autonomously through
repeated exposure to systems like the ones used in our experiments
(e.g., switches and lights). Such exposure could have led people to
develop an inductive bias (Griffiths, Chater, Kemp, Perfors, & Te-
nenbaum, 2010) to expect that more than one variable (switch) can
bring about the relevant outcome (light). If this assumption was
deeply ingrained, encountering five different sparse systems in Ex-
periment 4 may not have been sufficient to override it. Evidence in
support of the idea that people have some prior expectations about
causal sparsity comes from a recent study by Strickland, Silver, and
Keil (2017), who illustrated that people have different beliefs about
the average number of causes of an effect depending on the domain.
Specifically, participants expected more causes (e.g., a less sparse
environment) in psychological domains compared with physical do-
mains. Given that our current experiments are based on a physical
system (switches), it would be interesting to further explore whether
the default bias toward testing one variable at a time is exacerbated
when variables are psychological states.

Stopping Decisions

In addition to deviations from the most efficient strategy, we
found that participants sometimes made additional (costly) tests
even if—from the perspective of an optimal learner—they already
had enough information to determine which of the variables could
affect the outcome. Oversampling with respect to the cost structure
is not an isolated finding in information search tasks (e.g., Juni,
Gureckis, & Maloney, 2016; Tversky & Edwards, 1966). How-
ever, it is curious that in this task participants were, in principle,
getting no information from their additional tests. A similar result
was recently found in a causal learning version of the Twenty
Questions game that required participants to ask questions or make
interventions in order to sequentially narrow down causally rele-
vant objects (Ruggeri et al., 2016). In this task, particularly young
children (7-year-olds), but to lesser degree adults as well, were
found to collect additional information when they already knew
enough to make a correct choice.

Our experiments also give at least some indication of the source
of this suboptimal stopping behavior. Importantly, we found that in
the sparse condition, additional tests were much more likely when
a participant had not yet observed the working switch affect the
outcome (i.e., turn on the light), but the same was not the case for
the nonworking effect in the dense condition. First of all, this
suggests that suboptimal stopping was not merely a memory effect.
If participants conducted extra tests because they forgot about
prior ones, they should have done so irrespective of how many
variables one should manipulate in order to gather information
most efficiently. Instead, the fact that participants in the sparse
group sought to confirm the effects of the working switch might be
the consequence of a type of positive testing strategy, that is, the
desire to confirm the expected outcome(s)—here, the causal
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effect—predicted by one’s hypothesis. Evidence for this kind of
strategy has been found in different kinds of hypothesis testing
experiments in which participants frequently test instances that can
confirm their current hypothesis instead of trying to falsify it (e.g.,
Klayman & Ha, 1987; McKenzie & Mikkelsen, 2000; Wason,
1960; White, 2009). Recently, a similar tendency was found in a
number of causal learning experiments showing that participants
were particularly likely to intervene on variables that would yield
many effects predicted by a structure that the learner currently
considers to be plausible (Bramley et al., 2017; Coenen et al.,
2015). There also exists evidence that, in some cases, people
perceive the presence of causal effects as more informative (Co-
enen & Gureckis, 2015) and more likely (Davis & Rehder, 2017)
than noneffects that objectively have the same informational value
or likelihood. Our experiments thus further corroborate this asym-
metry of effects and noneffects.

However, the positive testing we observed was not uniquely
indicative of confirmatory testing. When participants in the dense
condition had enough information to identify the nonworking
switch, they did not generally confirm this by producing confir-
matory case in which only the broken switch is activated and the
effect does not occur (see analyses of Experiment 2). This is
consistent with people having a positive testing strategy (Klayman,
1995; McKenzie, 2004), favoring tests in which their hypothesis
predicts a positive outcome to tests in which their hypothesis
predicts a negative outcome.

Complexity

A question we have not yet touched on is how optimal strategies
change when some of the simplifying assumptions about the nature
of the causal system no longer hold. For example, consider drop-
ping the assumption that causes are independent of one another, in
which case there may exist interactions between them (Eberhardt,
Glymour, & Scheines, 2012; Lucas & Griffiths, 2010). In that
situation, learners eventually have to test combinations of variables
to ensure they uncover the complete causal structure of a system.
Another possibility is that causes take on more values than present
(here, “on”) or not absent (here, “off”). For example, causes might
be disabling (i.e., preventing the outcome from occurring; see
Walsh & Sloman, 2011). In that case, the meaning of controlling
a variable changes from turning it off to finding a neutral state in
which it neither enables nor disables the outcome. Another com-
plicating factor that often holds in real-world causal systems is the
probabilistic nature of the relationship between causes and out-
comes. Compared with the deterministic case used in this article,
probabilistic causal links can make intervention-planning much
more difficult (e.g., Bramley et al., 2015; Steyvers et al., 2003). In
future work, we hope to explore how people plan strategies to
interact with such more complex multivariate systems.

Conclusions

This article contributes two sets of findings to our understanding of
causal experimentation. First, the model-based analyses demonstrate
that, contrary to some debates in the education literature, the principle
of controlling variables (testing variables one by one) is not always
the most efficient strategy for discriminating among multiple causes.
Instead, we show that the causal sparsity of a system determines

whether the information-maximizing strategy is to manipulate few or
many variables. Second, our empirical findings highlight some of the
major determinants of self-directed causal learning behavior. They
show that, in line with the optimal actor analysis, learners can adapt
their behavior based on knowledge about abstract features of their
environment (here, causal sparsity) when planning causal experi-
ments. However, our experiments also revealed a tendency toward
habitual strategy use, which might be based on people’s prior learning
history, instructions received in the past, or strong environmental
priors. Finally, we found asymmetric preferences for seeking effects
rather than noneffects, which adds to growing evidence that biases
found in other areas of self-directed hypothesis testing also affects
causal experimentation.
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Appendix A

Optimal Planning Model

In addition to the informational analysis presented in the intro-
duction, we also considered the strategy that optimizes the ex-
pected payoff over the entire sequence of tests. Assuming that the
cost for making a test and the payoff for finding the correct
solution are defined in advance, this kind of decision problem can
be solved via dynamic programming.

Here, we will derive predictions of this optimal planning model
for the same basic example used in the introduction of a system of
n binary variables that can be either (deterministic) causes or
noncauses. To simplify the analysis, we consider only the most
extreme cases of a sparse system with a single cause and a dense
system with N-1 causes. These cases also correspond to most of
the experiments presented in this article. We assume that there
exists a cost, c, for conducting each test, as well as a final reward,
r, for finding the correct solution, and no reward otherwise. On
every trial, a learner must choose from a set of possible actions, in
which an action corresponds to either turning on any number of
variables or stopping and guessing the solution, that is, a � A �
{1, . . . , n, stop}. The state of a learner’s current belief can be
summarized as the number of remaining variables that might be
the cause (in the sparse case) or noncause (in the dense case), that
is, x � X � {1, . . . , n}. We assume that this belief state is updated
after every observation, such that proven (non)causes are elimi-
nated. The value of a state at trial t is

Vxt
� max

a�A
U(xt,a), (6)

where the utility for a further test is

Uxt,a�stop � �xt�1
[V(xt�1) |a] � c, (7)

and the utility of stopping and guessing is

Uxt,stop � 1
xt

r. (8)

We use this model to compute the optimal solution for the first
trial of a sparse (one cause) system of four, six, 10, or 20 variables,

with a final reward r � 1 and a sampling cost of c � r
n. Again, we

assume that the learner starts with a uniform belief over which

variables are causes and noncauses. This corresponds to the eight
conditions of Experiment 2. Note that the solution when n � 6 also
applies to Experiments 1 and 4.

Predictions are shown in Table A1. Unlike the myopic EIG
model, the optimal planning strategy for the sparse case includes
other methods of dividing the initial hypothesis space, besides the
exact half split. In these cases, the added risk of needing more
interventions to find the correct solution is offset by the probability
of the working switch being part of the smaller of the two subsets,
which speeds up the process of finding it. The optimal solution for
the dense case obviously remains the same as the myopic EIG
solution, as any test of more than one variable yields completely
uninformative evidence.

In addition to predicting the number of variables to manipulate
in a given state, this model also predicts when a learner should stop
making tests altogether. In addition to the obvious case of having
found the solution, it is sometimes possible that it becomes equally
or more valuable to stop earlier and make a guess about the
remaining possibilities. For example, when there are two remain-
ing possibilities, stopping early results in a 0.5 probability of
guessing correctly and winning the remaining reward. If this value
happens to be greater than or equal to the remaining reward minus
the cost of an additional test, stopping early is a viable option.
Given the same cost structure as Experiment 2, the model predicts
that an optimal actor could stop and guess if no solution is found
after two tests on four switches, four tests on six switches, eight
tests on 10 switches, and 17 tests on 20 switches. This holds
assuming that, before that point, all tests were optimal (here,
testing one variable at a time).

(Appendices continue)

Table A1
Predictions of the Optimal Planning Model for the First Trial of
the Sparse Condition (One Cause)

Number changed n � 4 n � 6 n � 10 n � 20

Sparse 2 2, 3, 4 4, 5, 6 8, 9, 10, 11, 12
Dense 1 1 1 1
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Appendix B

Sparsity Instructions

The following instructions about the sparsity of the system were
used in the Mechanical Turk Experiments 2 and 4. In particular,
participants were instructed twice and tested once on the number
of working or broken switches before proceeding to the main task.
In the beginning, participants were told (in the dense and sparse
conditions, respectively), “On each switchboard, one of the
switches is broken/working and all others are working/broken.”

Then, during the demo phase, they were told that “Again, only
one of the switches is broken/working, the rest are working/bro-
ken.”

In the quiz, participants were asked, “How many of the switches
on the switchboard are working?”

They had to answer correctly in order to proceed to the main
task.
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